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ABSTRACT

Brain  activity  can be assessed either  at  anatomical/functional micro-, meso- and macro- spatiotemporal scales of
observation, or at different intertwined levels with mutual interactions. Here we show, based on topological findings,
that nervous activities occurring in micro-levels project to single activities at the macro-levels.  This means that brain
functions assessed at the higher scale of the whole brain necessarily display a counterpart in the lower ones, and vice
versa.  Furthermore, we point out how it is possible for different functional and anatomical levels to be stitched (sewn)
together to become condensed brain activities, giving rise, for example, to ideas and concepts.  Also, a topological
approach makes it possible to assess brain functions in the general terms of particle trajectories taking place on donut-
like manifolds.   Indeed, every macro-scale activity, independent of the subtending theoretical model, can be described
in terms of a multi-dimensional torus mapping to activities at lower levels.  In physics, the term duality refers to a case
where two seemingly different systems turn out to be equivalent, because they are mathematically distinguishable
descriptions of the same phenomenon. Our framework permits a topological duality among different neuro-techniques,
because it holds for all the types of spatio-temporal brain activities, independent of  their  inter- and intra-level
relationships, strength, magnitude and boundaries.

INTRODUCTION

Many neuro-techniques have been developed throughout the years,  in order to assess brain activity at different levels or
dimensions of spatio-temporal observation. The rather general term “brain activity” stands here for a large repertoire of
brain functions and mental faculties, such as attention and perception, emotions and cognition, memory and learning,
higher cognitive processes (decision making, goal-directed choice, and so on) (Gazzaniga, 2009), mind wandering
(Andrews-Hanna et al., 2014) and so on. Every technique is an observational  domain of the whole  neuro-scientific
discipline,  each one assessing an anatomical or functional scale different from the others.  Some techniques assess
brain activity at gross-grained levels of observation, such as EEG and lesion studies (Buszaki and Watson, 2012; Jensen
et al., 2014).    Others take into account a meso-level of observation,  e.g., localized brain areas and sub-areas, such as
diffuse tensor imaging, MEG analysis and fMRI resting state functional connectivity.  Other approaches allow the
assessment of more coarse-grained levels, e.g., microlumns (Opris and Casanova, 2014), or single-neuron function and
structure.  Further, more reductionist approaches focus on the molecular levels  of brain activity: see, for example,
Jacobs et al. (2007),  Stankiewicz  et al. (2013),  Ekstrand et al. (2014), Gárate et al. (2014).  The last, but not the least,
other techniques favour an approach that involves more than a single functional and anatomical level, tackling the issue
of brain functions in terms of non-boundary wall domains spanning over every observational dimensions and scales
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(Friston, 2010; Sporns, 2013; Tozzi, 2015).  Consciousness, for example, does not seem  to be confined to a single level
(Koch et al., 2016).  This means that far apart levels must interact one each other too (Touboul, 2012).
Here we explore the possibility to assess dimensional scales as well as multilevel brain activity in terms of algebraic
topology.  We show, based on novel topological findings, how brain activities with matching descriptions embedded in
higher anatomical or functional levels map to single activities  in lower  scales.  Therefore, activities encompassed in
higher dimensional levels necessarily display a counterpart in the lower ones, and  vice versa.  This leads to a novel
scenario, where different scales of brain activity are able to scatter, collide and combine, merging together in an
assessable  way.  Our  framework  holds  for  all  the  types  of   approaches  to  the  brain,  independent  of  their  peculiar
features, resolution, magnitude and boundaries.  This means that all the neuro-techniques  are dual under topological
transformation.  The term dual refers to a situation where two seemingly different physical systems turn out to be
equivalent. If two techniques or phenomena are related by a duality, it means that one can be transformed into the other,
so that one phenomenon ends up looking just like the other one (Zwiebach and Barton, 2009). We also show how such
duality permits brain activity assessment in the general terms of particle  trajectories taking place on donut-like
manifolds.  Indeed, every brain model can be described in the guise of  multi-dimensional tori, projecting and mapping
among levels which display different spatio-temporal features.

TOPOLOGY  AND BRAIN ACTIVITIES AT DIFFERENT ANATOMICAL/FUNCTIONAL LEVELS

Here we assess brain activities in terms of geometric structures.  Brain physical spaces model regions, areas or shapes
on the surface of abstract geometric spaces.  Nervous activity are then modelled as paths  followed by particles traveling
through brain micro-, meso- or macro- areas, or through  different levels.  Lower-level brain activity  can be depicted as
a  structure  equipped with n-dimensions  (e.g., a two-dimensional disk), while the higher-level  one  as a  n+1 -
dimensional structure (e.g., a three-dimensional sphere).  Various continuous mappings from higher to lower
dimensional structures  lead  to the Borsuk-Ulam theorem (BUT) (Borsuk 1933;Krantz, 2009; Tozzi and Peters, 2016a).
BUT states states that a single point on a circumference maps to two antipodal points on a sphere, both characterized by
the same description.  Points on the sphere are antipodal, provided they are diametrically opposite (Weisstein, 2016).  If
we simply evaluate nervous activities instead of points, BUT leads naturally to the possibility of a region-based brain
geometry.  Indeed, the two opposite points could stand not just for the description of simple topological points
(Marsaglia, 1972), but also of the signals detected by different neuro-techniques, such as  spatial or temporal patterns,
vectors, particle trajectories, entropies, free-energies (Peters, 2016). Therefore, we can describe brain features as
antipodal points on n+1 –dimensional structures.  Brain signals of different scales can be compared, because the two
antipodal points can be assessed at higher-dimensional scales of observation (brain macro-levels), which can be pulled
back to single points at lower-dimensional scales (brain micro-levels) (Tozzi and Peters, 2016b). The two points (or
regions, or activities) do not need necessarily to be antipodal, in order to be described together (Peters, 2016).  Indeed,
BUT can be generalized also for the assessment of non-antipodal features, provided there are a pair of regions, either
adjacent or far apart, with the same feature vector (Peters and Tozzi, 2016a).   Even though BUT was originally
described just for convex spheres, it is also possible for us to look for antipodal points on structures equipped with other
shapes (Mitroi-Symeonidis, 2015; Tozzi, 2016).  This means that, whether brain activity displays concave, convex or
flat geometry, it does not matter, because we may always find the points with matching description predicted by BUT.
Furthermore, an n+1 –dimensional structure might  map straight to a corresponding  lower-dimensional surface, instead
of another n-dimensional structure.  In other words, a brain area may map also just to itself  (Weeks, 2002), so that the
mapping of two antipodal points to a single point in a dimension lower becomes a projection internal to the same
structure.  For technical readers, see also: Dodson and Parker (1997), Matousek (2003), Crabb and Jaworowski (2013).

In the evaluation of brain activities at every spatio-temporal scale, here we assess antipodal regions  instead of antipodal
points (Peters and Naimpally, 2012; Lentzen, 1939; Disalle, 1995; Henderson, 1996; Di Concilio, 2013; Di Concilio
and  Gerla,  2006).   A  brain  region  is  called  a worldsheet, if everyone of its sub-regions contains at least one brain
activity modelled as a string that describes a path followed by a moving particle. The term worldsheet designates a
region of the  brain space completely covered by nervous activities (Peters and Tozzi, 2016b)  (Figure 1). A 2D plane
worldsheet can be rolled up to form the lateral surface of a 3D cylinder, termed a worldsheet cylinder (Peters 2016b).
Further, a worldsheet cylinder maps to a worldsheet torus, formed by bending the former until the ends meet.  In sum, a
flattened worldsheet maps to a worldsheet torus.  This means that every brain activity can be described in terms of
particle movements along the surface of multi-dimensional, donut-like  toruses  (Figure 1).   Hence,  BUT provides  a
way to evaluate changes of information among different anatomical and functional brain levels in a topological space,
which is distinguished from purely functional or thermodynamical perspectives.
Next, consider Brouwer’s fixed point theorem (FPT)  (Volovikov and Yu, 2008).  Su (1997) gives a nice illustration of
the  FPT:  no  matter  how you continuously  slosh  the  coffee  around in  a  coffee  cup,  some point  is  always  in  the  same
position that it was before the sloshing began. And if you move this point out of its original position, you will
eventually we move some other point in the sloshing coffee back into its original position.  In BUT terms, this means
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that not only we can always find a brain region  containing an activity, but also that every  activity comes together with
another one, termed a wired friend.  These observations lead to a wired friend theorem: every occurrence of a wired
friend activity on the n+1 -dimensional structure maps to a fixed description, e.g. to another activity that belongs to an
n-dimensional structure  (Figure 1) (Peters and Tozzi, 2016b).  The significance of this is that we can always find an
activity,  embedded in a higher-dimensional brain macro-level,  which is the topological description of another activity,
embedded in a lower dimensional brain micro-level.  And vice versa.

Figure 1.  Samples of brain activities, illustrated  in guise of geometrical shapes,  are represented by the regions A and
B on different structures with diverse dimensions. Regions A and B  are examples of antipodal activities which lie on
structures with various dimensions.  See the text for further details.

THE MERGING OF BRAIN ACTIVITIES

In the previous paragraph, we showed  how  different brain activities, depicted in guise of geometrical shapes,
necessarily  have at least a feature in common.  In topological terms, nervous activities/shapes are continually
transforming into new homotopically equivalent nervous activities/shapes.  They might influence each other by
scattering, colliding and combining, to create bounded regions in the brain.   Hence, it is possible for brain activities to
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stick together to become condensed, e.g., worldsheets (operationally assessable in terms of the torus described above),
which are portrayed as a collection of interacting elements of geometrical shapes.
Eventually brain activity’s shapes will deform into another, as a result of the collision of a pair of separate shapes.  Let a
brain activity be represented in Fig. 2.A.  This brain activity evolves over time as it twists and turns through the outer
reaches of another brain activity.  An inkling twisting brain activity appearing in the neighbourhood of the first one is
illustrated in Fig. 2.B.   The two activities begin interacting, so that the first now has a region of space in common with
the  second  (Fig. 2.C).     In  effect,  as  a  result  of  the  interaction,  they   are  partially  stitched  together.    The  partial
absorption of one brain activity in another is shown in Fig. 2.D.  Here,  a  very  large  region  of  the  total  brain  space
occupied by the first activity is absorbed by the second.  Therefore, we have the birth of a condensed brain activity.  The
two brain activities become at first concentric in Fig. 2.E., then a complete condensed shape is formed in Fig. 2.F.
When the two brain activities are completely transformed into a new one, we have instance of their  homotopy of
equivalence,  with the second that has completely absorbed the first.   To make  an example, the idea of cat arises from
the perception of many single cats of different size, colour, and so on.   This is a further instance of the duality principle
in brain theories.   That is, one brain activity is the dual of another, provided the first can be deformed into the second
there is no longer any difference between the cat I see and the cat I imagine.

Here we provide a short mathematical treatment for technical readers.  Let , :f g X Y® be a pair of continuous

maps.   For example, let ( )f X and ( )g X be two localized brain activities.  A homotopy (Cohen, 1973) between f

and g is a continuous map : [0,1]H X Y´ ® so that ( ,1) ( )H x g x= and ( ,0) ( )H x f x= .    It  is  possible  to
deform (transform) one brain activity with a particular shape into another with a different shape.  It means that the birth
of novel brain activities,  that evolve out of the interaction of initially disjoint activities, is allowed.   Let

:Xid X X®  denote an identity map defined by ( )Xid x x= .  Similarly, :Yid Y Y® is defined by ( )Yid t y= .

The composition ( )f g Xo is defined by ( )( ) ( )f g X f g X=o .  Similarly, ( )g f Xo is defined by

( )( ) ( )g f X g f X=o .   The sets X and Y are homotopically equivalent, provided there are continuous maps so that

( )Xg f id xo and ( )Yf g id yo .   The sets X and Y are the same homotopy type, provided X and Y are
homotopically equivalent (Peters and Inan, 2016; Peters and Naimpally, 2012).  This leads to a comparison of brain
activities, with seemingly varying shapes and sizes, that are homotopically equivalent.  The brane in Fig. 2.E is  an
example of a Edelsbrunner-Harer nerve (Peters and Inan, 2016), which is a collection NrvÁ  such that all nonempty
subcollections of NrvÁ  have a non-void common intersection, i.e.,

{ }: .Nrv X XÁ= ÎÁ ¹ ÆI

Lemma 1.  Brain activities of the same homotopy type are stitched together to form a condensed brain activity.
Proof.   Let G, H be brain activities with the same homotopy type.   Then brain activity G can be deformed into brain
activity H.  In effect, shape H absorbes G.   By definition, brain activity H is a condensed brain activity.  This
phenomenon is true in general for homotopically equivalent brain activity that have the potential to be stitched together.
To make a psychological example, the prolonged view of different cars gives rise to idea of traffic.  Hence, the desired
result follows.
Theorem 1.  A condensed brain activity is an instance of an Edelsbrunner-Harer nerve.
Proof.  From Lemma 1, a condensed brain activity is an instance of an Edelsbrunner-Harer nerve.
Theorem 2.  Every brain activity is a Edelsbrunner-Harer nerve.
Proof.  Let G be a macro-level brain activity.  Every G is a collection of micro-level shapes, so that each of the shape
has brain activity G in common.   That is, all the micro-levels brain activities occurring in G have nonempty
intersection.   Consequently, G is an Edelsbrunner-Harer nerve.  Hence, the desired result follows.
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Figure 2.  Homotopically equivalent shapes, standing for brain activities. A:  a brain activity at a given spatiotemporal
level.  Such level could be differently coarse-grained, e.g., might stand for every micro-, meso-  or macro-level. B: two
brain activities at two different levels. C:  interacting brain activities. D: dual brain activities. E: concentric brain
activities. F:  condensed  brain activity.  See the text for further details.

DISCUSSION

Neuro-techniques evaluate different types and forms of brain activity, displayed at micro-, meso-,  or macro-levels of
observation.  Here we  evaluate   topological  concepts that makes it possible for us to correlate the features of different
neurotechniques’ setups.  We achieve generalizations  that allow the assessment of every  possible brain activity,
independent on its  scale, magnitude, specific features and local boundaries. Brain activities, equipped either with
antipodal or non-antipodal matching description and embedded in higher-dimensional nervous structures, map to a
single activity in lower-dimensional ones, and vice versa.  In other words, there exists an assessable and quantifiable
correspondence between micro-, meso- and macro-levels of brain activities.  We could conceive brain activities  that are
too far apart ever to communicate with one another, so that activities bounded on distant brain regions would never
have direct contact: for example, two apparently opposite brain activities such as emotions and abstraction have
apparently very few in common.  However, our topological investigation reveals that this scenario is unfeasible,
because there must be at least one element in common also among brain activities that are very distant one each other.
Brain activities  will always have some element in common: they do not exist in isolation, rather they are part of a large
interconnected whole, with which they interact.  Whether you experience  pain or pleasure, or chomp on an apple, or
compute a mathematical expression, or quote a proverb,  or remember your childhood, or read Wittgenstein’s Tractatus,
it does not matter: the large repertoire of your brain functions  can be described in the same topological fashion.  The
distinction among different coarse-grained levels of nervous activity does not count anymore, because nervous function
at small, medium and large scales of neural observation turn out to be topologically equivalent.
In our brain scenario, particle  movements are described as functions occurring on structures displaying different
possible geometric curvatures, either concave, convex or flat.    Such generalization encompasses the brain models that
claim for different curvatures of   the brain phase space (see, for example, Sengupta et al., 2016).  This means that such
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theories are DUAL: e.g., their topological description is the same, despite the huge difference in the subtending
hypothesized curvature. It allows a useful simplification in the assessment of brain activity.  Furthermore, the level of
observation is not significant in the evaluation of brain activities, because such levels are fully interchangeable.
Because  projections between dimensions describe  neural  phenomena spanning from the smallest to the highest scales,
the distinction among different coarse-grained scales does not count anymore, because nervous activity is topologically
the same, at small, medium and large scales of observation.  This means, for example, that that all the types of cognitive
studies assess the same topological activity, regardless of their different protocols and procedures.
Brain theories predict the existence  of long-range connexions, e.g., paths equipped with two ends lying on physical
separated  brain zones.  An appropriate projection mapping shows that, if the two ends have matching features (e.g., the
intensity, or length, or pairwise entropy), the two activities are the same. In sum, two activities with matching
description, embedded in two brain zones of different levels, display the same features.  Activities with matching ends
(regions) in different cortical areas might also help to throw a bridge, for example, between sensation and perception.
In the same guise, the relationships between the spontaneous and the evoked activity of the brain (Tozzi et al., 2016b)
take now a new significance: they become just two sides of the same coin, made of topologically-bounded dynamics.
Our results also entail that every kind of high-dimensional brain activity can be described in terms of donut-like
structures (Peters and Tozzi, 2016b).  Lower-dimensional features  can be assessed in the generic terms of particle
trajectories traveling on higher-dimensional, donut-like toruses.  This methodological advance, already used in limited
trials (Stemmler et al., 2015)  could be useful in order to achieve a unvarying operationalization of the countless
theories describing brain function (Marijuan et al., 2013).  In sum, the paths described  by BUT and FPT variants
elucidate how the tight coupling among different neural  activities  gives rise to brains that are in charge of receiving
and interpreting signals from other cortical zones, in closely intertwined relationships at every spatio-temporal level.
Therefore, topology becomes one of the central information processing strategies of the nervous system.
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