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Abstract. Let G1 and G2 be two graph with vertex sets V (G1), V (G2) and

edge sets E(G1), E(G2) respectively. The subdivision graph S(G) of a graph
G is the graph obtained by inserting a new vertex into every edges of G. The

SG−vertexjoin of G1 and G2 is denoted by G1♦G2 and is the graph obtained

from S(G1) ∪ G1 and G2 by joining every vertex of V (G1) to every vertex
of V (G2). In this paper we determine the adjacency spectra ( respectively

Laplacian spectra and signless Laplacian spectra) of G1♦G2 for a regular graph

G1 and an arbitrary graph G2
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1. Introduction

All graphs described in this paper are simple and undirected. Let G = (V (G), E(G))
be a graph with vertex set {v1, v2, · · · vn} and edge set {e1, e2, · · · em}. The adja-
cency matrix of G denoted by A(G) = (aij)n×n is an n × n symmetric metrix
with

aij =

{
1 if vi and vj are adjacent

0 otherwise

Let di be the degree of the vertex vi in G and D(G) = diag(d1, d2, · · · dn) be
the diagonal matrix of G . The Laplacian matrix and signless Laplacian matrix
are defined as L(G) = D(G) − A(G) and Q(G) = D(G) + A(G) respectively. The
characteristic polynomial of A of G is defined as fG(A : x) = det(xIn − A) where
In is the identity matrix of order n. The roots of the characteristic equation of A
are called the eigenvalues of G. It is denoted byλ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) and
are called A − Spectrum of G. The eigen values of L(G) and Q(G) are denoted
by 0 = µ1(G) ≤ µ2(G), · · · ≤, µn(G) and ν1(G) ≤ ν2(G), · · · ≤ νn(G). They are
called the L− Spectrum and Q− Spectrum of G. Since A(G),L(G) and Q(G) are
real and symmetric, their eigen values are all real numbers. The subdivision graph
S(G) [2] of G is the graph obtained by inserting an additional vertex in each edge
of G. Equivalently, each edge of G is replaced by a path of length 2.

The incidence matrix of G is the 0 − 1 matrix R with rows indexed by vertices
and column by edges where Rve = 1 when the vertex v is an end point of the edge
e and 0 otherwise.

In Graph Theory, every graph can be expressed in terms of certain real, symmet-
ric matrices derived from the graph, most notably the adjacency or Laplacian or
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signless Laplace matrices. The idea of spectral graph theory is to exploit the rela-
tion between graphs and matrices inorder to study problems with graphs by means
of eigen values of some graph matrices. The spectral theory of graphs consists of
all the special theories including their interaction. Spectral Graph theory focuses
on the set of eigenvalues and eigenvectors, called the spectrum, of these matrices
and provides several interesting areas of study.Spectral graph theory is where graph
theory and matrix theory meet.

The adjacency spectrum of a graph consist of the eigen value ( together with
their multiplicities) and the Laplacian ( signless Laplacian) spectrum of G consist of
the Laplace ( signless Laplace ) eigen values together with their multiplicities.Two
graphs G and H are said to be cospectral if they have the same spectrum.Upto now
numerous examples of cospectral but non-isomorphic graphs are reported [3, 9, 10].
But, only few graphs with every special structure have been proved to be determined
by their spectrum.A graph is A − integral if the A − spectrum consist only of
integers [7, 6, 19] ”Which graph are determined by their spectrum?” [11] seems to
be a difficult problem in the theory of graph spectrum. The idea of spectral graph
theory is to exploit numerous relations between graphs and matrices inorder to
study problems with graphs by means of eigen values of some graph matrices. It is
a theory in which graphs are studied by means of the eigen values of some matrix(
based on adjacency, Laplacian matrices etc).

The characteristic polynomial and spectra of graphs helps to investigate some
properties of graphs such as energy [14, 20], number of spanning tree [21, 15], the
Kirchoff index [5, 8, 16], Laplace- energy - like invarients [13] and so on.

The energy E(G) =
∑n
i=1 |λi| , Kirchoff index, Kf = n

∑n
i=2

1
µi

and Laplace-

energy - like invarients LEL =
∑n
i=2

√
µi

Laplacian matrix has a long history. The first result is by Kirchoff in an 1847
paper concentrated with the electrical network. There exist a vast leterature that
studies the Laplacian eigen values and their relationship with various properties
of graph [17, 18]. Most of the studies of the Laplacian eigen values has naturally
concentrate on external non trivial eigen value. Gutman et al. [20] discovered con-
nection betwen photoelectron spectra of standard hydrocarbones and the Laplacian
eigen values of the undelying molecular graphs.

The signless Laplace spectrum performs better in comparison with other com-
monly used graph matrices. An idea was expressed in [11] among the matrices
associated with agraph. The signless Laplacian spectrum seems to be the most
convenient for use in studying graph properties [3] .Several paper on the signless
Laplacian spectrum are published by D. Cvetkovic. In [7]the spectra of subdivision
vertex join and subdivision - edge join are introduced and their A − Specta are
computed. In this paper we define SG − vertex join of two graphs and also find
the A− Spectrum ( L− spectrum and Q− Spectrum) of the new join.

2. Priliminaries

Lemma 2.1. [4] Let G be a r-regular graph with an adjacency matrix A and an
incidence matrix R. Let L(G) be its line graph. Then RRT = A+ rI and RTR =
A(L(G)) + 2I.



Proposition 2.2. [4, 1] Let M1.M2,M3,M4 be respectively p× p, p× q, q× p, q× q
matrix with M1 and M4 are invertible then

det

(
M1 M2

M3 M4

)
= det(M1)det(M4 −M3M

−1
1 M2)

= det(M4)det(M1 −M2M
−1
4 M3)

Definition 2.3. [10] Let G be a graph on n vertices, with the adjacency matrix A.
The characteristic matrix xI−A of A has determinant det(xI−A) = fG(A : x) 6= 0
,so is invertible. The A−coronal, ΓA(x) of G is defined to be the sum of the entries
of the matrix (xI −A)−1. This can be calculated as

ΓA(x) = 1Tn (xI −A)−11n

Lemma 2.4. [10] Let G be r -regular on n vertices. Then

ΓA(x) =
n

x− r

Since for any graph G with N vertices, each row sum of the Laplacian matrix
L(G) is equal to 0, we have

ΓL(x) =
n

x

Lemma 2.5. [10] Let G be the bipartite graph Kpq where p+ q = n then

ΓA(x) =
nx+ 2pq

x2 − pq

Proposition 2.6. Let A be an n×n real matrix, and Js×t denote the s× t matrix
with all entries equal to one. Then det(A+ αJn × n) = det(A) + α1Tnadj(A)1n

where α is a real number and adj(A) is the adjugate matrix of A.

Corollary 2.7. Let A be an n× n real matrix. Then
det(xIn −A− αJn×n) = (1− αΓA(x))det(xIn −A).

Definition 2.8. Let G1 be a graph on n1 vertices and m1 edges. G2 be an arbitary
graph on n2 vertices The SG− vertex join of G1 and G2 is denoted by G1♦G2 and
is the graph obtained from S(G1)∪G1 and G2 by joining every vertex of V (G1) to
every vertex of V (G2).Where S(G1) is the subdivision graph of G1

Definition 2.9. The SG − edge join of G1 and G2 is denoted by G14G2 and is
the graph obtained from S(G1) ∪ G1 and G2 by joining the additional vertices of
S(G1) corresponding to the edges of G1 with every vertex of V (G2).



Example C4♦K2

3. Spectrum of G1♦G2

Theorem 3.1. Let G1 be an r1 - regular graph on n1 vertices and m1 edges. G2

be an arbitrary graph on n2 vertices. then,

fG1♦G2(A : x) = fG2(A2 : x)xm1−n1(x2−r1x−2r1−n1xΓA2(x))

n1∏
i=2

(x2−λix−(λi+r1))

Proof. The adjacency matrix of G1♦G2 is

A =

 A1 R Jn1×n2

RT 0m1 0m1×n2

Jn2×n1 0n2×m1 A2


where A1 and A2 are the adjacency matrix of G1 and G2and R is the incidence
matrix of G1

The Charactreristic polynomial of G1♦G2 = fG1♦G2
(A : x) =∣∣∣∣ xIn1

−A1 −R −J
−RT xIm1

0

−J 0 xIn2
−A2

∣∣∣∣
= det (xIn2

−A2) det S

where

S =

(
xIn1 −A1 −R
−RT xIm1

)
−
((
−Jn1 × n2

0

)
(xIm2

−A2)−1
(
−Jn2

× n1 0
))

=

(
xI −A1 −R
−RT xI

)
-

(
ΓA2(x)Jn1×n1 0

0 o

)
=

(
xI −A1 − ΓA2(x)Jn1×n1 −R

−RT xI

)
detS = det(xI −A2)det

(
(xI − a1 − ΓA2

(x)J −R(xIm−1)−1RT
)



= xm1det

(
xI −A1 − ΓA2

(x)J +
RRT

x
)

)

= xm1det

(
xI − (A1 +

RRT

x
)− ΓA2

(x)J

)

= xm1det

(
xI − (A1 +

RRT

x
)

)(
1− ΓA2

(x)Γ
A1+ RRT

x

(x)
)

G1 is r1 - regular and row sum of RRT is 2r1

Row sum of A1 + RRT

x is r1 + 2r1
x

Γ
A1+ RRT

x

=
n1

x− r1
+
r1

x
=

n1x

x2 − r1x− 2r1

detS = xm1

(
1− ΓA2(x) n1x

x2−r1x−2r1

)
det
(
xI −A1 −

A1+r1In1

x

)
= xm1−n1

(
x2−r1x−2r1−n1xΓA2

x2−r1x−2r1

)
det(x2I −A1x−A1 − r1I)

= xm1−n1

(
x2−r1x−2r1−n1xΓA2

x2−r1x−2r1

)∏n1

i=1

(
x2 − λi(G1)x− λi(G1)− r1

)
Here we use the property that λ1(G1) = r1 . Then
detS = xm1−n1

(
x2 − r1x− 2r1 − n1xΓA2

)∏n1

i=2

(
x2 − xλi(G1)− λi(G1)− r1

)
Thus

fG1♦G2
(A : x) = fG2

(A2 : x)xm1−n1(x2−r1x−2r1−n1xΓA2
(x))

n1∏
i=2

(x2−λix−(λi+r1))

�

Corollary 3.2. Let G1 be an r1 - regular graph with n1 vertices and m1 edges and
G2 be r2 - regular then the A− Spectrum of G1♦G2 consists of

(i) λi(G2), fori = 2, 3, ..., n2

(ii) 0 , repeated m1 − n1 times

(iii)
λi(G1)±

√
(λi(G1)+2)2+4(r1−1)

2 for i = 2, 3..., n1

(iv) Three roots of the equation x3 − (r1 + r2)x2 + (r1r2 − 2r1 − n1n2)x+ 2r1r2

Corollary 3.3. Let G1 be an r1 - regular graph with n1 vertices and m1 edges and
G2 is K̄n then the A− Spectrum of G1♦G2 consists of

(1) 0 , repeated m1 − n1 + p+ q − 2 times

(2)
λi(G1)±

√
(λi(G1)+2)2+4(r1−1)

2 for i = 2, 3..., n1

(3) Four roots of the equation x4 − r1x
3 − (pq + 2r1 + n1(p + q))x2 + pq(r1 −

2n1)x+ 2pqr1

3.1. Laplacian Spectrum of G1♦G2.

Theorem 3.4. Let G1 be an r1 - regular graph on n1 vertices and m1 edges. G2

be an arbitrary graph on n2 vertices. then,

fG1♦G2
(L : x) = fG2

(L2 : x)(x(x−2)m1

x−n1
(x2−(2+r1+n1+n2)x+(2n1+2n2+n1r1))∏n2

1=2(x− n1 − µi(G2)
∏n1

i=2(x2 − (2 + µi(G1 + r1 + n2)x+ (2n2 + 3µi(G1)))



Proof. The Laplace adjacency matrix of G1♦G2 is

L =

 (r1 + n2)In1
+ L1 −R −Jn1×n2

−RT 2Im1 0m1×n2

−Jn2×n1 0n2×m1 n1In2 − L2


where L1 and L2 are the adjacency matrix of G1 and G2

The Laplacian Charactreristic polynomial of G1♦G2 = fG1♦G2
(L : x) =∣∣∣∣∣ (x−r1−n2)In1

−L1 R J

RT (x−2)Im1 0

J 0 (x−n1)In2
−A2

∣∣∣∣∣
=

det((x− n1)In2
− L2)detS

where

S =

(
(x− r1 − n2)In1 − L1 R

RT (x− 2)Im1

)
−
((

Jn1×n2

0

)
((x− n1)Im1

− L2)−1
(
Jn2×n1

0
))

=

(
(x− r1 − n2)I − L1 R

RT (x− 2)I

)
-

(
ΓL2

(x− n1)Jn1×n1
0

0 o

)
= (x− 2)m1det

(
(x− r1 − n2)I − L1 − ΓL2

(x− n1)J − RRT

x− 2

)

= (x−2)m1det

(
(x− r1 − n2)I − L1 −

RRT

x− 2

)
(1−ΓL2

(x−n1)Γ
L1+ RRT

x−2

(x−r1−n1)

= (x−2)m1−n1

(
1− n2

x− n1

n1

x− r1 − n2
− 2r1

x− 2

)
det ((x− r1 − n2)(x− 2)I − (x− 2)L1 − (A1 + r1I))

=
x(x− 2)m1−n1

x− n1
(x2 − (n1 + n2 + r1 + 2)x+ (2n1 + 2n2 + n1r1))

n1∏
i=2

(
x2 − (2 + µi(G1) + r1 + n2)x+ (2n2 + 3µi(G1))

)
Hence

fG1♦G2(L : x) = fG2(L2 : x)(x−n1)
x(x− 2)m1−n1

x− n1

(
x2 − (n1 + n2 + r1 + 2)x+ 2n1 + 2n2 + n1r1

)
n1∏
i=2

(
x2 − (2 + µi(G1) + r1 + n2)x+ (2n2 + 3µi(G1)

)
fG1♦G2(L : x) = x(x− 2)m1−n1

(
x2 − (n1 + n2 + r1 + 2)x+ 2n1 + 2n2 + n1r1

)
n2∏
i=2

(x− n1 − µi(G2)

n1∏
i=2

(
x2 − (2 + µi(G1) + r1 + n2)x+ (2n2 + 3µi(G1)

)
�



3.2. Signess Laplacian Spectrum of G1♦G2.

Theorem 3.5. Let G1 be an r1 - regular graph on n1 vertices and m1 edges. G2

be an arbitrary graph on n2 vertices. then,

fG1♦G2
(Q : x) = x(x− 2)m1−n1

(
x2 − (n1 + n2 + r1 + 2)x+ 2n1 + 2n2 + n1r1

)
n2−1∏
i=1

(x− n1 − µi(G2)

n1−1∏
i=1

(
x2 − (2 + µi(G1) + r1 + n2)x+ (2n2 + 3µi(G1)

)
Proof. The Signless Laplace adjacency matrix of G1♦G2 is

Q =

 (r1 + n2)In1
+Q1 R Jn1×n2

RT 2Im1
0m1×n2

Jn2×n1
0n2×m1

n1In2
+Q2


where Q1 and Q2 are the signless Laplace adjacency matrix of G1 and G2 respec-
tively.

The proof of the theorem is on similar lines as that of Theorem 3.4
�

Corollary 3.6. Let G1 be an r1 - regular graph on n1 vertices and m1 edges. G2

be an r2 - regular graph on n2 vertices then,

fG1♦G2
(Q : x) = (x− 2)m1−n1(x3 − ax2 + bx− c)

n2−1∏
i=1

(x− n1 − νi(G2))

n1−1∏
i=1

(x2 − (2 + r1 + n2 + νi(G1))x+ 2(r1 + n2) + νi(G1))

Where

a = n1 + n2 + 3r1 + 2r2 + 2

b = 2n1 + 2n2 + 4r1 + 4r2 + 3n1r1 + 2n2r2 + 6r1r2

c = 4(n1r1 + n2r2 + 2r1r2)
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