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Abstract 

In this paper a possible analytical demonstration of Planck's Law for the spectral distribution of the 
electromagnetic energy radiated by hot bodies is presented, but in this case, the solutions of Maxwell's 
equations for the electromagnetic radiation problem of Hertz’s dipole are used. The concepts of quantum 
energy and of photon are redefined from the classical point of view, relating them to the possible electronic 
nature of electromagnetic waves and the electromagnetic field in general. Both the physical analysis and the 
concepts proposed respect the law of conservation of energy and allow to finally express the quantic 
constant, which is obtained here as a perfect combination of other fundamental constants of nature. The 
classic interpretation of the law obtained could be considered as the meeting point between Classical Physics 
and Quantum Mechanics, which suggests a new review of the theoretical basis of the latter is needed. 
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In 1901 the German scientist Max Planck published a proposal of a thermodynamic model to 
describe the spectral distribution of the electromagnetic energy radiated by hot bodies, [1]. In 
his research he obtained for the first time two fundamental constants of nature, k, called 
Boltzmann’s constant in honor to the Austrian scientist Ludwig Eduard Boltzmann, who is 
considered the father of statistical mechanics, and h, which is named Planck’s constant by the 
scientific community in honor to him. Thus, he could propose the concept of quantum of energy, 
which in turn allowed Albert Einstein in 1905 to introduce the concept of photon, [2]. Both 
concepts are an important part of the theoretical foundations of quantum mechanics as we know 
today and its empirical mathematical expression, which is      , also called, Planck-Einstein 
relation. Planck used a statistical thermodynamic model because at that time, apparently, it was 
not possible to use appropriately the system of basic equations of electromagnetism of James 
Clerk Maxwell to explain the case of the black body radiation. 

In this paper, an electrodynamic model which could be accepted as an analytical demonstration 
of Planck-Einstein relation is proposed, but using instead the solutions of Maxwell's equations for 
electromagnetic radiation of Hertz’s dipole. This demonstration was presented for first time as 
part of the Doctoral Thesis of this author. Also, a novel classical reinterpretation of concepts such 
as quantum of energy and photon is proposed here. These deductions could constitute the 
solution of one of the most notable problems of Physics, which has been unsolved for more than 
a century, and could change the way we understand nature nowadays, opening the door to 
obtain classical and simple solutions of scientific problems without a clear explanation until 
today. Moreover, all the explanations and the analysis method used in this research comply 
strictly with the law of conservation of energy. 

This paper is organized in four sections; the first is the present introduction, the second is the 
formulation, in which the analytical demonstrations are performed. The third corresponds to the 
discussion of the main results. Finally, in the conclusions section the possibility of being at the 
junction of Classical Physics and Quantum Mechanics is considered among other things. At the 
end of the paper the references used are listed. 
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Formulation 

Figure 1 shows the equivalent circuit of an antenna-generator system in which the generator is 
represented by an alternating voltage source    with internal resistance   , that delivers a 

signal of frequency  . The antenna used is a Hertz dipole radiator type and is represented by its 
radiation resistance     . 
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Figure. 1. Antenna-generator system. 

The radiation resistance of Hertz’s dipole is obtained from the solutions of Maxwell's equations 
for the problem of electromagnetic radiation, [3]: 
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In equation ( ), Δ is the radiator’s length or distance between the charges accumulated in its 
ends, and   represents the wavelength of the electromagnetic waves emitted by the dipole. On 
the other hand, it is known that: 
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In which   is the speed of the electromagnetic waves in vacuum (speed of light of about 
        ⁄ ). Then, substituting equation (2) in (1), the radiation resistance is obtained as a 
function of the frequency  : 
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Moreover, the power of the radiation emitted as a function of frequency is: 
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Where   [  (       ( ))⁄ ] is the current flowing through the circuit of Figure 1, and the 

spectral power distribution given by equation (4) is shown in Figure 2. 

 

 

 
Figure.2. Power spectral distribution radiated by the Hertz dipole. 

Under these conditions, the energy of the electromagnetic radiation is given by equation (5): 
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Its unit analysis is as follows: 
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Substituting equation (4) into (5) and operating, the following result is obtained: 
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Figure 3 shows the energy spectral distribution according to equation (6). 
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Figure.3. Energy spectral distribution radiated by the Hertz dipole. 

Now, grouping conveniently the terms in equation (6), and multiplying the numerator and 
denominator by the charge of the electron  , the equation is not altered: 

 

 ( )  
  

 
(     
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Exchanging the         of the current to the square on the first factor in equation (7) with the 
        associated with the charge of the electron inside the brackets, the first factor would 
remain dimensionless, given that the          of the numerator and the denominator are 
cancelled. 

Note that the ratio [ [ ]  ⁄ [ ]]  [             ⁄ ]            , and it would represent 

the number of electrons corresponding to one         of electric charge. Then, the 
dimensionless factor      ⁄  will be designated as the quantic number in equation (7). 
Remember that the         was transferred inside the brackets. 

The rest of equation (7) would have                   units, which is the same as 
          , and this in turn can be expressed in the form of                  . Given this, all 
that is inside the brackets will be called electrodynamic quantic constant, with             units 
and it is designated as    as an analogy with Planck's constant. The remaining       in equation 
(7) corresponds to the frequency   outside of the brackets. Finally, equation (7) in compact 
notation will remain as follows: 
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Analysis of the constant     

As it can be seen in Figure 2, the maximum of the power spectrum always coincides with a 
frequency value for which     ⁄ , or expressed in electrical lengths as   ⁄      . This 
guarantees that the product       in equation (7) always results in a constant value of   . 
Given this,    will be: 

      
  

  
        [

 

  
] ( ) 

 

Whose value is: 
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On the other hand, in the case of the energy radiated by Hertz’s dipole, in equation (8), the 
quantic number   is also a function of frequency  , since the current flowing through the circuit 
depends on it; see Figure.1. 
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Under these conditions, the energy distribution shown in Figure 3 can be arranged in two 
functions. According to equation (9), one would correspond to the quantic number function  ( ) 
given by equation (11), and the other would correspond to the linear function    , which 
already includes the electrodynamic quantic constant   . Both variations are shown below in 
Figure 4. 

 

 
a) 

 
b) 

Figure. 4. Spectrum associated with functions: a) quantic number and b) photon energy. 
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As shown in equation (9), constant    results in a perfect combination of other fundamental 
constants of nature, being the first constant   , which is the basis of our current numeric system, 
which in turn is composed of the unit and the zero, two of the most important numbers in 
mathematics; the second constant is the number  , of extraordinary beauty and value given its 
presence in nature, the third constant is  , which is the speed of light in vacuum and sets the 
upper limit of speed that can be achieved in nature. Finally, the charge of the electron e is the 
fourth constant, which is the elementary mass particle that will carry the electromagnetic energy, 
and it will be discussed in more depth later. 

 

Interpretation proposal 

In the case of the electromagnetic radiation emitted by the Hertz dipole and generally by 
artificial antennas developed by man, a possible classical interpretation of the equation (8) could 
be the following: 

The quantic number   represents the number of electromagnetic energy quanta (electrons) that 
are emitted by the radiator in a second, which is the matter that constitutes the electromagnetic 
field radiated as electromagnetic waves; and   would set the amount of photons 
(electromagnetic waves) radiated by the dipole in a second as well.  

Then, operating with constant    from the equation of the quantic law (8), the result is: 

 

   
 

  
      [

 

  
] (  ) 

 

Which states that    is proportional to the energy carried by each photon (electromagnetic 
wave) radiated by the dipole. This interpretation is reasonable, since the numerator is the 
energy radiated in a second and the denominator represents the amount of quanta and photons 
that are emitted in the same time unit.  

The physical units of this constant [           ⁄ ], would lead to the same argumentation 
presented before, since the constant would be proportional to the amount of energy supplied by 
the signal generator to the radiator in each oscillation or cycle of the electric current. Then, 
     ⁄  would be the number of energy quanta that compose each photon emitted by the 
radiator. 

 

Relation and quantitative differences with Planck's constant 

The experimental value officially reported for Planck’s constant is associated with the quantic 
Hall effect, [4], whose value is                    [   ⁄ ], so that the relation between   
and     would be as follows: 
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This indicates that the constant   is      times greater than   . Now, an important question 
would be how to justify scientifically the multiplication of    by the coefficient    in order to 
demonstrate that this would be, in fact, Planck's constant. 

It would be reasonable to think that the constant   is calculated using the energy that is 
measured experimentally from the radiation emitted by the surface of a hot body, so that the 
radiators that constitute this surface would emit in a semi-space or an exterior half-sphere, 
characterized by a certain directivity. On the other hand, the quantic constant    presented here 
has been obtained analytically from the solutions of Maxwell's equations for the radiation of a 
Hertz dipole isolated in free space, and radiating in a    steradian sphere (full space). This 
implies that when the dipole is in the surface of the body, the intensities of their fields in the 
external half-space of interest would be those resulting from the superposition of the direct ray 
and the reflected ray in the surface of the body itself. In this case, the resulting magnitudes are: 

 

                  | |         (  | |) (  ) 

  and 

                  | |         (  | |) (  ) 

 

Where   would be the reflection coefficient on the surface of the radiant body. On the other 
hand: 

  √          
 

 

 

This allows associating the coefficient   with the factor [  | |] of the resulting fields of 
equations (13) and (14): 

 
             

 

 

 

This represents a reflection coefficient of       , which is quite reasonable, since the 
condition     must always be met. Moreover, the solution of the radiation problem for the 
case of Hertz’s dipole is composed of the following expressions [3]: 
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So that the radiation fields extracted from equations (15) and (16) are respectively: 
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Equations (17) and (18) represent the fields that predominate far from the radiator (radiated 
fields); note that the amplitudes of these fields depend only on the inverse of the distance  . 
Furthermore, they correspond to the incidents fields      and      of equations (13) and (14) in 
the half-space of interest, thus, the radiation resistance of the Hertz ‘s dipole will be affected by 
the presence of the surface of the body. This argumentation allows introducing the coefficient   
in the expression of the radiation resistance as follows: 
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The introduction of the correction factor    will be finally justified as follows: 
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Discussion 

Note that a reflection coefficient   is implicit in   , which may vary slightly depending on the 
material properties of the radiating body. This could explain the existing differences in the value 
that is obtained for   for different experiments regarding the official value reported, so that the 
values obtained in different situations could be correct; therefore, the so called Planck’s constant 
would not be a universal constant of nature. Meanwhile the composed constant    is a universal 
constant of nature. 
 
On the other hand, the fact that the charge of the electron   can be found in   , could be a sign 
that the electron is not only the elementary unit of electric charge, but the elementary particle 
constituting the electromagnetic field and therefore, the material carrier of electromagnetic 
energy. Then, the set of electromagnetic energy quanta (electrons), governed by  ( ) in 
equation (11), would be present in nature, forming flows of electromagnetic fields; and they 
would be governed by the laws of classical electromagnetism of Maxwell. 
 
It is interesting to note that in the equations (15) and (16) governing the radiated 
electromagnetic field, the only terms involving matter are those of the current  , and that this is 
reduced to periodical electronic flows. It is also known that electronic flows have ondulatory and 
particle properties, and also electrical and mechanical properties, such as electric charge, mass 
and movement. Now it could be accepted that these flows also have magnetic properties and 
polarization characteristics depending on the orientation of these, so that the electromagnetic 
radiation would be only the periodic emission of discrete packets of energy (vortex electronic 
and quantum mechanical flows). Therefore, the electromagnetic radiation would be quantized 
like the electromagnetic field, which has been verified here by obtaining analytically the constant 
   (quantic electrodynamic action) and the demonstration of Planck's Law from the laws of 
classical electromagnetism of Maxwell , strictly meeting the law of conservation of energy. 
 
This would show that the constant    is proportional to the energy contained in each 
electromagnetic wave (vortex flow) emitted by a radiator isolated in free space, for each 
oscillation of the feeding current supplied by the generator; therefore, its units are [   ⁄ ]. 
 

Conclusions 

An electrodynamic model that makes use of the solutions of Maxwell's equations for the problem 
of electromagnetic radiation is proposed, and with this model, Planck's Law for the spectral 
distribution of the electromagnetic energy radiated by hot bodies could be demonstrated. The 
concept of quantum of energy was redefined, relating it to the electron as the fundamental 
particle of mass that constitutes the electromagnetic field. The concept of photon was associated 
with the electronic vortex flow radiated in the form of an electromagnetic wave, and the 
electrodynamic quantic constant was obtained as a perfect combination of other fundamental 
constants of nature, also fulfilling other purely aesthetic mathematical criteria. 
 
Other conclusions that could be drawn from this research are, for example, the extension of the 
applicability range of the system of basic equations of electromagnetism of Maxwell. The 
possible electronic nature of the electromagnetic waves and the electromagnetic field was also 
considered. On the other hand, the treatment of electromagnetic waves as particles and their 
massive nature could be justified in certain situations given that the electrons (energy quanta) 
have mass. The massive nature of the energy quanta (electrons) also ensures that the laws of 
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conservation of mass, charge, energy and mechanical impulse are met in the electromagnetic 
field at the same time, something that would constitute a reasonable explanation of the intrinsic 
natural unity of the electromagnetic field, which was proposed by Maxwell himself and it is 
accepted nowadays; but it could never be fully demonstrated, since the electron was discovered 
by J. J. Thomson in 1897 [5], and its properties must still be investigated. 
 
Finally, the demonstration of the Planck-Einstein relation presented in this research introduces a 
meeting point between classical physics and quantum mechanics and perhaps, it could prove in 
the future that the current statements of the latter are based on the true material laws of nature. 
 

Methods 

A purely analytical method based on the solutions of Maxwell’s equations for the problem of 
electromagnetic radiation was followed. This method can be easily verified given its simplicity 
and the closed form of its results. 
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