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 We find previously[1] a general solution for Navier-Stokes Equations, 

supposing that there is a solution for initial instant 𝑡 = 0 and applying an 

additional initial condition 
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0 = ∑

𝜕𝑢𝑖
0(𝑋)

𝜕𝑥𝑗

3
𝑗=1 , 1 ≤ 𝑖 ≤ 3, in the case on 

what the external force is zero. We will now generalize that solution to the case 

where there is a conservative external force, 𝑓 = ∇𝑈, being applied in the fluid, for 

example, gravity. The problem is resolved dividing the original pressure in two 

parts, 𝑝 = 𝑝𝑓 + 𝑝𝑢, one of them (𝑝𝑓) depending exclusively of the potential of 𝑓 and 

another (𝑝𝑢) as the obtained previously, depending exclusively of the velocity 𝑢 

(and therefore 𝑢0). The influence of the conservative external force is only change 

the total pressure, without influence in the velocity, as happens in the Bernouilli´s 

law.    

 Firstly, we will prove theorems without external force, using 𝑝 = 𝑝𝑢, 𝑝𝑓 = 0, 

the identical proofs of [1]. 

 Let 𝑢0(𝑥, 𝑦, 𝑧) and 𝑝0(𝑥, 𝑦, 𝑧) be respectively the initial velocity and initial 

pressure of the three-dimensional incompressible (∇ ∙ 𝑢 = ∇ ∙ 𝑢0 = 0) Navier-

Stokes equations without external force and with mass density equal to 1, 

    

(1)  
𝜕𝑝(𝑋,𝑡)

𝜕𝑥𝑖
+

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
+ ∑ 𝑢𝑗(𝑋, 𝑡)

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑥𝑗
=  ∇2𝑢𝑖(𝑋, 𝑡),3

𝑗=1  

 

 1 ≤ 𝑖 ≤ 3, 𝑋 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3, 𝑥1 ≡ 𝑥,  𝑥2 ≡ 𝑦,  𝑥3 ≡ 𝑧, 𝑥𝑖 , 𝑡 ∈ ℝ, 𝑡 ≥ 0. 

 

 Then in 𝑡 = 0 is valid, for each integer 𝑖 belongs to 1 ≤ 𝑖 ≤ 3, 

(2)  
𝜕𝑝0(𝑋)

𝜕𝑥𝑖
+

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0 + ∑ 𝑢𝑗

0(𝑋)
𝜕𝑢𝑖

0(𝑋)

𝜕𝑥𝑗

3
𝑗=1 =  ∇2𝑢𝑖

0(𝑋). 
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 Supposing that 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) and 𝑝(𝑥, 𝑦, 𝑧, 𝑡) =

𝑝0(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) is a solution (𝑢, 𝑝) for (1), we have 

(3)  
𝜕𝑝0(𝜉)

𝜕𝑥𝑖
+

𝜕𝑢𝑖
0(𝜉)

𝜕𝑡
+ ∑ 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝑥𝑗
=  ∇2𝑢𝑖

0(𝜉)3
𝑗=1 ,  

where 𝜉 = (𝜉1, 𝜉2, 𝜉3) and 𝜉𝑖 = 𝜉𝑖(𝑋, 𝑡) = 𝑥𝑖 + 𝑡, 1 ≤ 𝑖 ≤ 3. 

 For 𝑡 = 0 the equations (2) and (3) are equals, because in 𝑡 = 0 we have 

𝜉𝑖 = 𝑥𝑖 and therefore  𝜉 = (𝜉1, 𝜉2, 𝜉3)  = (𝑥1, 𝑥2, 𝑥3) = 𝑋.  

 For 𝑡 > 0, if (2) is valid for any 𝑋 = (𝑥, 𝑦, 𝑧) ∈ ℝ3 then (3) is valid for any 

𝜉 ∈ ℝ3 substituting 𝑥 ↦ 𝜉1 = 𝑥 + 𝑡, 𝑦 ↦ 𝜉2 = 𝑦 + 𝑡, 𝑧 ↦ 𝜉3 = 𝑧 + 𝑡, 𝑥, 𝑦, 𝑧 ∈

ℝ, 𝑡 ≥ 0, so 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) and 𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝0(𝑥 + 𝑡, 𝑦 +

𝑡, 𝑧 + 𝑡), i.e., 𝑢(𝑋, 𝑡) = 𝑢0(𝜉) and 𝑝(𝑋, 𝑡) = 𝑝0(𝜉), solve equation (3) and therefore 

the Navier-Stokes equation (1). 

 The initial motivation to prove it is as follows. Let 𝐴(𝑥), 𝐵(𝑥), 𝐶(𝑥) and 

𝐷(𝑥)  functions such that is always valid, for any 𝑥 ∈ ℝ, the relation 

(4)  𝐴(𝑥) + 𝐵(𝑥) +  𝐶(𝑥) = 𝐷(𝑥). 

 Then, as (𝑥 + 𝑡) ∈ ℝ, 𝑥, 𝑡 ∈ ℝ, 𝑡 ≥ 0, need be valid too the relation   

(5)  𝐴(𝑥 + 𝑡) + 𝐵(𝑥 + 𝑡) +  𝐶(𝑥 + 𝑡) = 𝐷(𝑥 + 𝑡). 

 The same argument can be used for functions of two and three spatial 

dimensions (or better, for 𝑛 spatial dimensions), for example, ∀𝑥, 𝑦, 𝑧, 𝑡 ∈ ℝ, 𝑡 ≥ 0,   

(6)  𝐴𝑖(𝑥, 𝑦, 𝑧) + 𝐵𝑖(𝑥, 𝑦, 𝑧) + 𝐶𝑖(𝑥, 𝑦, 𝑧) = 𝐷𝑖(𝑥, 𝑦, 𝑧) 

  ⟹ 𝐴𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) + 𝐵𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) +  

                 + 𝐶𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) = 𝐷𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡).  

 Applying the previous relation (6) to the Navier-Stokes equations (2) for 

𝑡 = 0, if 

(7.1)  𝐴𝑖(𝑥, 𝑦, 𝑧) =
𝜕𝑝0(𝑋)

𝜕𝑥𝑖
 ,  

(7.2)  𝐵𝑖(𝑥, 𝑦, 𝑧) =
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0, 

(7.3)  𝐶𝑖(𝑥, 𝑦, 𝑧) = ∑ 𝑢𝑗
0(𝑋)

𝜕𝑢𝑖
0(𝑋)

𝜕𝑥𝑗

3
𝑗=1 ,  

(7.4)  𝐷𝑖(𝑥, 𝑦, 𝑧) =  ∇2𝑢𝑖
0(𝑋), 

(7.5)  𝐴𝑖(𝑥, 𝑦, 𝑧) + 𝐵𝑖(𝑥, 𝑦, 𝑧) + 𝐶𝑖(𝑥, 𝑦, 𝑧) = 𝐷𝑖(𝑥, 𝑦, 𝑧), 
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𝑋 = (𝑥, 𝑦, 𝑧), then, using 𝜉 = 𝜉(𝑋, 𝑡) = (𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡), need be valid 

too the equalities 

(8.1)  𝐴𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) =
𝜕𝑝0(𝜉)

𝜕𝑥𝑖
 ,  

(8.2)  𝐵𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) = (
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0)(𝜉), 

(8.3)  𝐶𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) = ∑ 𝑢𝑗
0(𝜉)

𝜕𝑢𝑖
0(𝜉)

𝜕𝑥𝑗

3
𝑗=1 ,  

(8.4)  𝐷𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) =  ∇2𝑢𝑖
0(𝜉), 

(8.5)  𝐴𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) + 𝐵𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) +  

            + 𝐶𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) = 𝐷𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡). 

The expression (
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0)(𝜉) in (8.2) means that first is calculated the value 

of  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
, next we assign the value 𝑡 = 0 in this result and then we substitute 

𝑥 ↦ 𝜉1 = 𝑥 + 𝑡, 𝑦 ↦ 𝜉2 = 𝑦 + 𝑡, 𝑧 ↦ 𝜉3 = 𝑧 + 𝑡, i.e., 𝑋 ↦ 𝜉. 

 Note that the right side of the relations (8.1) to (8.4) corresponds to each 

parcel of the Navier-Stokes equations (8.5) with the solution (𝑢, 𝑝) such that 

(9.1)  𝑢(𝑋, 𝑡) = 𝑢0(𝜉), 

(9.2)  𝑝(𝑋, 𝑡) = 𝑝0(𝜉), 

𝑋 = (𝑥, 𝑦, 𝑧), 𝜉 = 𝜉(𝑋, 𝑡) = (𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡), then (9) is a solution for (1) if 

𝑢0(𝑋) and 𝑝0(𝑋) are initial conditions. 

 We will now prove that if the variables (9.1) and (9.2) solve (1) for 𝑡 ≥ 0 

then 𝑢0(𝑥, 𝑦, 𝑧) and 𝑝0(𝑥, 𝑦, 𝑧) solve (1) for 𝑡 = 0, i.e., then both 𝑢0(𝑥, 𝑦, 𝑧) and 

𝑝0(𝑥, 𝑦, 𝑧) solve (2). This is an important result of this paper. We'll use the chain 

rule[2].  

Proof: Starting from (1), the three-dimensional incompressible Navier-Stokes 

equations, where ∇ ∙ 𝑢 = ∇ ∙ 𝑢0 = 0,  

(10)  
𝜕𝑝(𝑋,𝑡)

𝜕𝑥𝑖
+

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
+ ∑ 𝑢𝑗(𝑋, 𝑡)

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑥𝑗
=  ∇2𝑢𝑖(𝑋, 𝑡),3

𝑗=1  

1 ≤ 𝑖 ≤ 3, 𝑋 = (𝑥, 𝑦, 𝑧), if a solution (𝑢, 𝑝) for them is (9), i.e.,  

(11.1)  𝑢(𝑋, 𝑡) = 𝑢0(𝜉), 

(11.2)  𝑝(𝑋, 𝑡) = 𝑝0(𝜉), 

𝜉 = 𝜉(𝑋, 𝑡) = (𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡), then we have, according (3), 
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(12)  
𝜕𝑝0(𝜉)

𝜕𝑥𝑖
+

𝜕𝑢𝑖
0(𝜉)

𝜕𝑡
+ ∑ 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝑥𝑗
=  ∇2𝑢𝑖

0(𝜉)3
𝑗=1 . 

 How 𝜉𝑖 = 𝑥𝑖 + 𝑡 then 
𝜕𝜉𝑖

𝜕𝑥𝑖
=

𝜕𝜉𝑖

𝜕𝑡
= 1 and 

𝜕𝜉𝑖

𝜕𝑥𝑗
= 0 if 𝑖 ≠ 𝑗, so using the chain 

rule[1] we have, for each parcel in (10) and (12), 

(13.1)  
𝜕𝑝(𝑋,𝑡)

𝜕𝑥𝑖
=

𝜕𝑝0(𝜉)

𝜕𝑥𝑖
= ∑

𝜕𝑝0(𝜉)

𝜕𝜉𝑗

3
𝑗=1

𝜕𝜉𝑗

𝜕𝑥𝑖
=

𝜕𝑝0(𝜉)

𝜕𝜉𝑖
 

(13.2)   
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
=

𝜕𝑢𝑖
0(𝜉)

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1

𝜕𝜉𝑗

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1  

(13.3)  𝑢𝑗(𝑋, 𝑡)
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑥𝑗
= 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝑥𝑗
= 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝜉𝑗

𝜕𝜉𝑗

𝜕𝑥𝑗
= 

   = 𝑢𝑗
0(𝜉)

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗
 

(13.4)  ∇2𝑢𝑖(𝑋, 𝑡) = ∇2𝑢𝑖
0(𝜉) = (

𝜕

𝜕𝑥1

𝜕

𝜕𝑥1
+

𝜕

𝜕𝑥2

𝜕

𝜕𝑥2
+

𝜕

𝜕𝑥3

𝜕

𝜕𝑥3
) 𝑢𝑖

0(𝜉) = 

  = ∑ (
𝜕

𝜕𝜉𝑗

𝜕𝜉𝑗

𝜕𝑥𝑗

𝜕

𝜕𝜉𝑗

𝜕𝜉𝑗

𝜕𝑥𝑗
) 𝑢𝑖

0(𝜉) =3
𝑗=1 ∑ (

𝜕

𝜕𝜉𝑗

𝜕

𝜕𝜉𝑗
) 𝑢𝑖

0(𝜉) =3
𝑗=1  

  = ∇𝜉
2𝑢𝑖

0(𝜉) 

 Adding the parcels (13), with (13.3) for each integer 𝑗 = 1, 2, 3 and the 

multiplication of (13.4) by viscosity coefficient , we come to 

(14)  
𝜕𝑝0(𝜉)

𝜕𝜉𝑖
+ ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 + ∑ 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 =  ∇𝜉

2𝑢𝑖
0(𝜉), 

which is equivalent to previous Navier-Stokes equations (10) and (12) with the 

solution (11), although it is not a conventional Navier-Stokes equation because the 

time derivative disappears, i.e., 

(15)  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
↦ ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 . 

Note that the right side of (15) is not 
𝜕𝑢𝑖

0(𝜉)

𝜕𝑡
+ ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 , because here 𝑢𝑖

0 is, 

initially, a function only of   𝜉 = (𝜉1, 𝜉2, 𝜉3), not including 𝑡, but each 𝜉𝑖 is a function 

of 𝑡 and for this reason here is  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
=

𝜕𝑢𝑖
0(𝜉)

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1

𝜕𝜉𝑗

𝜕𝑡
=

∑
𝜕𝑢𝑖

0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 , with 𝜉𝑗 = 𝑥𝑗 + 𝑡,

𝜕𝜉𝑗

𝜕𝑡
= 1. 

 In 𝑡 = 0, when 𝜉𝑖 = 𝑥𝑖 , the equation (14) became 
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(16)  
𝜕𝑝0(𝑋)

𝜕𝑥𝑖
+ ∑

𝜕𝑢𝑖
0(𝑋)

𝜕𝑥𝑗

3
𝑗=1 + ∑ 𝑢𝑗

0(𝑋)
𝜕𝑢𝑖

0(𝑋)

𝜕𝑥𝑗

3
𝑗=1 =  ∇2𝑢𝑖

0(𝑋). 

 If this equation is equivalent to (2) then 

(17)  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0 = ∑

𝜕𝑢𝑖
0(𝑋)

𝜕𝑥𝑗

3
𝑗=1 ,  

which is thereby a good manner of define or choose the temporal derivative of 

velocity at 𝑡 =  0 when the solution for velocity is 𝑢(𝑋, 𝑡) = 𝑢0(𝜉).   

 Similarly, for 𝑡 > 0 we have   

(18)  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 , 

𝑋 = (𝑥, 𝑦, 𝑧), 𝜉 = (𝜉1, 𝜉2, 𝜉3), 𝜉𝑖 = 𝜉𝑖(𝑋, 𝑡) = 𝑥𝑖 + 𝑡, 1 ≤ 𝑖 ≤ 3. 

 Concluding, assuming that (9), identical to (11), is a solution for (1), 

identical to (10), we come to (16) for 𝑡 = 0, which is equivalent to (2) with the 

additional initial condition (17) and it has a solution (𝑢0(𝑋), 𝑝0(𝑋)). This is what 

we wanted to prove.         □ 

 Next, we will prove the opposite way of the previous demonstration: if 

𝑢0(𝑥, 𝑦, 𝑧) and 𝑝0(𝑥, 𝑦, 𝑧) solve (1) for 𝑡 = 0, i.e., if both 𝑢0(𝑥, 𝑦, 𝑧) and 𝑝0(𝑥, 𝑦, 𝑧) 

solve (2), then the variables (𝑢, 𝑝) given in (9.1) and (9.2) solve (1) for 𝑡 ≥ 0. This 

is the fundamental result of this paper. The proof basically follows what we write 

from beginning of this paper until the equations (9), increasing the 

transformations (13) and the conditions (17) and (18). We'll use the chain rule[2] 

again.  

Proof: If 𝑢0(𝑥, 𝑦, 𝑧) and 𝑝0(𝑥, 𝑦, 𝑧) solve the three-dimensional incompressible 

(∇ ∙ 𝑢 = ∇ ∙ 𝑢0 = 0) Navier-Stokes equations  

(19)  
𝜕𝑝(𝑋,𝑡)

𝜕𝑥𝑖
+

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
+ ∑ 𝑢𝑗(𝑋, 𝑡)

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑥𝑗
=  ∇2𝑢𝑖(𝑋, 𝑡)3

𝑗=1  

for 𝑡 = 0,  with 1 ≤ 𝑖 ≤ 3, 𝑋 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3, 𝑥1 ≡ 𝑥,  𝑥2 ≡ 𝑦,  𝑥3 ≡ 𝑧, 𝑥𝑖 , 𝑡 ∈ ℝ,

𝑡 ≥ 0,  then in 𝑡 = 0 is valid, for each integer 𝑖 belongs to 1 ≤ 𝑖 ≤ 3, 

(20)  
𝜕𝑝0(𝑋)

𝜕𝑥𝑖
+

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0 + ∑ 𝑢𝑗

0(𝑋)
𝜕𝑢𝑖

0(𝑋)

𝜕𝑥𝑗

3
𝑗=1 =  ∇2𝑢𝑖

0(𝑋). 

 Supposing that 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) and 𝑝(𝑥, 𝑦, 𝑧, 𝑡) =

𝑝0(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) is a solution (𝑢, 𝑝) for (19), we have 

(21)  
𝜕𝑝0(𝜉)

𝜕𝑥𝑖
+

𝜕𝑢𝑖
0(𝜉)

𝜕𝑡
+ ∑ 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝑥𝑗
=  ∇2𝑢𝑖

0(𝜉)3
𝑗=1 ,  
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using 𝜉 = (𝜉1, 𝜉2, 𝜉3) and 𝜉𝑖 = 𝜉𝑖(𝑋, 𝑡) = 𝑥𝑖 + 𝑡, 1 ≤ 𝑖 ≤ 3. 

 For 𝑡 = 0 the equations (20) and (21) are equals, because in 𝑡 = 0 we have 

𝜉𝑖 = 𝑥𝑖 and therefore  𝜉 = (𝜉1, 𝜉2, 𝜉3)  = (𝑥1, 𝑥2, 𝑥3) = 𝑋.  

 For 𝑡 > 0, if (20) is valid for any 𝑋 = (𝑥, 𝑦, 𝑧) ∈ ℝ3 then (21) is valid for any 

𝜉 ∈ ℝ3 substituting 𝑥 ↦ 𝜉1 = 𝑥 + 𝑡, 𝑦 ↦ 𝜉2 = 𝑦 + 𝑡, 𝑧 ↦ 𝜉3 = 𝑧 + 𝑡, 𝑥, 𝑦, 𝑧 ∈

ℝ, 𝑡 ≥ 0, according transformations (22) below, so 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥 + 𝑡, 𝑦 +

𝑡, 𝑧 + 𝑡) and 𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝0(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡), i.e., 𝑢(𝑋, 𝑡) = 𝑢0(𝜉) and 

𝑝(𝑋, 𝑡) = 𝑝0(𝜉), solve equation (21) and therefore the Navier-Stokes equation 

(19). 

 How 𝜉𝑖 = 𝑥𝑖 + 𝑡 then 
𝜕𝜉𝑖

𝜕𝑥𝑖
=

𝜕𝜉𝑖

𝜕𝑡
= 1 and 

𝜕𝜉𝑖

𝜕𝑥𝑗
= 0 if 𝑖 ≠ 𝑗, so using the chain 

rule[2] we have, for each parcel in (21), 

(22.1)  
𝜕𝑝0(𝜉)

𝜕𝑥𝑖
=

𝜕𝑝(𝜉(𝑋,𝑡))

𝜕𝑥𝑖
= ∑

𝜕𝑝0(𝜉)

𝜕𝜉𝑗

3
𝑗=1

𝜕𝜉𝑗

𝜕𝑥𝑖
=

𝜕𝑝0(𝜉)

𝜕𝜉𝑖
 

(22.2)   
𝜕𝑢𝑖

0(𝜉)

𝜕𝑡
=

𝜕𝑢𝑖(𝜉(𝑋,𝑡))

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1

𝜕𝜉𝑗

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1  

(22.3)  𝑢𝑗
0(𝜉)

𝜕𝑢𝑖
0(𝜉)

𝜕𝑥𝑗
= 𝑢𝑗(𝜉(𝑋, 𝑡))

𝜕𝑢𝑖(𝜉(𝑋,𝑡))

𝜕𝑥𝑗
= 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝜉𝑗

𝜕𝜉𝑗

𝜕𝑥𝑗
= 

   = 𝑢𝑗
0(𝜉)

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗
 

(22.4)  ∇2𝑢𝑖
0(𝜉) = ∇2𝑢𝑖(𝜉(𝑋, 𝑡)) = ∑ (

𝜕

𝜕𝑥𝑗

𝜕

𝜕𝑥𝑗
)3

𝑗=1 𝑢𝑖
0(𝜉(𝑋, 𝑡)) = 

  = ∑ (
𝜕

𝜕𝜉𝑗

𝜕𝜉𝑗

𝜕𝑥𝑗

𝜕

𝜕𝜉𝑗

𝜕𝜉𝑗

𝜕𝑥𝑗
) 𝑢𝑖

0(𝜉) =3
𝑗=1 ∑ (

𝜕

𝜕𝜉𝑗

𝜕

𝜕𝜉𝑗
) 𝑢𝑖

0(𝜉) =3
𝑗=1  

  = ∇𝜉
2𝑢𝑖

0(𝜉) 

 The equation (21) transformed through by (22) gives 

(23)  
𝜕𝑝0(𝜉)

𝜕𝜉𝑖
+ ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 + ∑ 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝜉𝑗
=  ∇𝜉

2𝑢𝑖
0(𝜉)3

𝑗=1 , 

that is, we transform 𝑋 ⟼ 𝜉 and from 𝜉𝑖 = 𝑥𝑖 + 𝑡 we have 
𝜕𝜉𝑖

𝜕𝑥𝑖
= 1 and therefore 

𝜕𝑥𝑖 = 𝜕𝜉𝑖. 

 The unexpected transformation is  

(24)  
𝜕𝑢𝑖

0(𝜉)

𝜕𝑡
=

𝜕𝑢𝑖(𝜉(𝑋,𝑡))

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 ,   
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making (23) not be in the form of a standard Navier-Stokes equation. In 𝑡 = 0 the 

transformation (24) becomes    

(25)  
𝜕𝑢𝑖

0(𝜉)

𝜕𝑡
|𝑡=0 =

𝜕𝑢𝑖(𝜉(𝑋,𝑡))

𝜕𝑡
|𝑡=0 =

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0 = ∑

𝜕𝑢𝑖
0(𝑋)

𝜕𝑥𝑗

3
𝑗=1 ,  

𝜉𝑗 = 𝑥𝑗 , 𝜉 = 𝑋, for 𝑡 = 0, thus we need to assume the additional initial condition  

(26)  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0 = ∑

𝜕𝑢𝑖
0(𝑋)

𝜕𝑥𝑗

3
𝑗=1  

when the solution for Navier-Stokes equation (1), identical to (19), is given by (9), 

i.e.,  

(27.1)  𝑢(𝑋, 𝑡) = 𝑢0(𝜉), 

(27.2)  𝑝(𝑋, 𝑡) = 𝑝0(𝜉), 

𝑋 = (𝑥, 𝑦, 𝑧), 𝜉 = 𝜉(𝑋, 𝑡) = (𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡). 

 Concluding, if (𝑢0(𝑋), 𝑝0(𝑋)) solve (2), identical to (20), substituting in 

(20) the transformation 𝑋 ↦ 𝜉, 𝑋 = (𝑥, 𝑦, 𝑧), 𝜉 = (𝜉1, 𝜉2, 𝜉3),  𝜉𝑖 =  𝑥𝑖 + 𝑡, we come 

to (23), 

(28)  
𝜕𝑝0(𝜉)

𝜕𝜉𝑖
+ ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 + ∑ 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝜉𝑗
=  ∇𝜉

2𝑢𝑖
0(𝜉)3

𝑗=1 , 

assuming the additional initial condition (26) 

(29)  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0 = ∑

𝜕𝑢𝑖
0(𝑋)

𝜕𝑥𝑗

3
𝑗=1  

due to transformation (24),   

(30)  
𝜕𝑢𝑖

0(𝜉)

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 . 

 Using (30) in (28) we come to 

(31)  
𝜕𝑝0(𝜉)

𝜕𝜉𝑖
+

𝜕𝑢𝑖
0(𝜉)

𝜕𝑡
+ ∑ 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝜉𝑗
=  ∇𝜉

2𝑢𝑖
0(𝜉)3

𝑗=1 , 

the Navier-Stokes equations with the solution (𝑢0(𝜉), 𝑝0(𝜉)), i.e., (𝑢(𝑋, 𝑡), 𝑝(𝑋, 𝑡)), 

according (27), identical to (9).  

 Using (27) and 𝜕𝜉𝑖 = 𝜕𝑥𝑖 in (31) we come finally to 

(32)  
𝜕𝑝(𝑋,𝑡)

𝜕𝑥𝑖
+

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
+ ∑ 𝑢𝑗(𝑋, 𝑡)

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑥𝑗
=  ∇𝑋

2 𝑢𝑖(𝑋, 𝑡)3
𝑗=1 , 
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the Navier-Stokes equations (1) with the solution (𝑢(𝑋, 𝑡), 𝑝(𝑋, 𝑡)). This is what we 

wanted to prove.           □ 

 

 What we see in the two previous proofs can be applied, with the obvious 

adaptations, to solutions of the form 

(33.1)  𝑢(𝑋, 𝑡) = 𝑢0(𝜉),  

(33.2)  𝑝(𝑋, 𝑡) = 𝑝0(𝜉), 

𝑋 = (𝑥, 𝑦, 𝑧), 𝜉 = (𝜉1, 𝜉2, 𝜉3),  𝜉𝑖 =  𝑥𝑖 + 𝑇𝑖(𝑡), 𝑇𝑖(0) = 0, 1 ≤ 𝑖 ≤ 3, 

with the conditions 

(34)  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1

𝜕𝜉𝑗

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 𝑇𝑗

′(𝑡),  

and   

(35)  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0 = ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 𝑇𝑗

′(0) = ∑
𝜕𝑢𝑖

0(𝑋)

𝜕𝑥𝑗

3
𝑗=1 𝑇𝑗

′(0), 

being the functions 𝑇𝑖(𝑡) differentiable of class 𝐶1([0, ∞)). In this case the 

equations (23) and (28) are 

(36)  
𝜕𝑝0(𝜉)

𝜕𝜉𝑖
+ ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 𝑇𝑗

′(𝑡) + ∑ 𝑢𝑗
0(𝜉)

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗
=3

𝑗=1  

  =
𝜕𝑝0(𝜉)

𝜕𝜉𝑖
+ ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 [𝑇𝑗

′(𝑡) + 𝑢𝑗
0(𝜉)] =  ∇𝜉

2𝑢𝑖
0(𝜉). 

 Note that the equation (34) implies 

(37)  𝑢𝑖(𝑋, 𝑡) = 𝑢𝑖
0(𝑋) + ∫ ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 𝑇𝑗

′
(𝑡) 𝑑𝑡

𝑡

0
= 

     = 𝑢𝑖
0(𝜉1, 𝜉2, 𝜉3) = 𝑢𝑖

0(𝑥1 + 𝑇1(𝑡), 𝑥2 + 𝑇2(𝑡), 𝑥3 + 𝑇3(𝑡)), 

that must be true for all differentiable function 𝑢𝑖
0(𝜉) with  𝜉𝑖 =  𝑥𝑖 + 𝑇𝑖(𝑡), 𝑇𝑖(𝑡) 

differentiable, 𝑇𝑖(0) = 0, 1 ≤ 𝑖 ≤ 3. 

 Also it is not hard see that, without major difficulties, it can be adapted to 

any integer spatial dimension,  𝑛 >= 1. 

 Including in the system a conservative external force 𝑓 = (𝑓1, 𝑓2, 𝑓3) whose 

potential is 𝑈, 𝑓 = ∇𝑈, we can separate the total pressure 𝑝 in two parts, 𝑝𝑓 and 𝑝𝑢, 

such that 𝑝 = 𝑝𝑓 + 𝑝𝑢. In this case, the more complete equations for 

incompressible Navier-Stokes equations are, for 1 ≤ 𝑖 ≤ 3, 
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(38)  
𝜕𝑝(𝑋,𝑡)

𝜕𝑥𝑖
+

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
+ ∑ 𝑢𝑗(𝑋, 𝑡)

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑥𝑗
=  ∇2𝑢𝑖(𝑋, 𝑡) + 𝑓𝑖

3
𝑗=1 ,  

with 

(39)  ∇ ∙ 𝑢 = ∇ ∙ 𝑢0 = 0.  

 Defining 

(40)  𝑝(𝑋, 𝑡) = 𝑝𝑓(𝑋, 𝑡) + 𝑝𝑢(𝑋, 𝑡) 

and the respective initial pressures  

(41)  𝑝0(𝑋) = 𝑝𝑓
0(𝑋) + 𝑝𝑢

0(𝑋), 

the obtained results in equations (1) and (2) for the pressure without external 

force will be attributed to 𝑝𝑢 and 𝑝𝑢
0, respectively, while 𝑝𝑓(𝑋, 𝑡) is equal to force-

potential 𝑈, i.e., 

(42.1)  ∇𝑝𝑓 = 𝑓 = ∇𝑈 

(42.2)  𝑝𝑓 = 𝑈 + 𝜃𝑓(𝑡), 

𝜃𝑓(𝑡) a generic physically and mathematically reasonable function of time, as we 

already know. 

 Of this manner, the introduction of an external force do not change the 

velocity, but only the total pressure, such that 

(43)  𝑝 = 𝑝𝑓 + 𝑝𝑢. 

 Then, the velocity can be calculated without the use of external force, in 

case of a conservative external force 𝑓 = ∇𝑈. 

 It is clear that in the Eulerian description[3] the computational and analytical 

challenges will be, more than solving the Navier-Stokes equations for 𝑡 >  0, solve 

these equations for 𝑡 =  0, the initial instant. Unfortunately, it is not for all pair of 

values (𝑢0, 𝑝0) that exists solution to the equation (28) and related equations, so 

or 𝑢0 is a function of 𝑝0, or 𝑝0 is a function of 𝑢0, or both 𝑢0 and 𝑝0 are functions of 

another functions, for example, a potential function 𝜙 such that 𝑢0 = ∇𝜙(𝑡 = 0), 

𝑢 = ∇𝜙, resulting in the known Bernouilli’s law.  

 It is convenient say that Cauchy[4] in his memorable and admirable Mémoire 

sur la Théorie des Ondes, winner of the Mathematical Analysis award, year 1815,  

firstly does a study on the equations to be obeyed by three-dimensional molecules 

in a homogeneous fluid in the initial instant 𝑡 = 0, coming to the conclusion which 

the initial velocity must be irrotational, i.e., a potential flow. Of this manner, after, 

he comes to conclusion that the velocity is always irrotational, potential flow, if the 



10 
 

external force is conservative, which is the Lagrange’s theorem (a possible 

exception occurs if one or two components of velocity are identically zero, when 

the reasonings on 3-D molecular volume are not valid). The solution obtained by 

Cauchy for Euler's equations is the Bernouilli's law, as almost always happens. 
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