Limit theorems for lattice group-valued *k*-triangular set functions A. Boccuto and X. Dimitriou

Abstract. Using sliding hump-type techniques, we prove some Schur, Vitali-Hahn-Saks and Nikodým-type theorems for lattice group-valued *k*-triangular set functions.

Let *R* be a Dedekind complete lattice group, *G* be an infinite set, Σ be a σ -algebra of subsets of *G*, $m: \Sigma \to R$ be a bounded set function, $v: \Sigma \to \mathbb{R} \cup \{+\infty\}$ be a non-negative and monotone set function, *k* be a fixed positive integer and let the involved intervals and halflines be intended in N.

Definitions 1. (a) A sequence $(p_n)_n$ in R is an (0)-sequence iff it is decreasing and $\Lambda_n p_n = 0$. (b) A bounded double sequence $(a_{t,l})_{t,l}$ in R is a (D)-sequence or a regulator iff $(a_{t,l})_l$ is an (0)-sequence for any $t \in \mathbb{N}$.

(c) We say that R is weakly σ -distributive iff $\bigwedge_{\varphi \in \mathbb{N}^{\mathbb{N}}} (\bigvee_{t=1}^{\infty} a_{t,\varphi(t)}) = 0$ for any (D)-sequence $(a_{t,l})_{t,l}$.

(d) A sequence $(x_n)_n$ in R is (D)-convergent to x iff there is a (D)-sequence $(a_{t,l})_{t,l}$ in R such that for every $\varphi \in \mathbb{N}^{\mathbb{N}}$ there is $n^* \in \mathbb{N}$ with $|x_n - x| \leq \bigvee_{t=1}^{\infty} a_{t,\varphi(t)}$ whenever $n \geq n^*$, and in this case we write (D) $\lim_{n \to \infty} x_n = x$.

(e) We call sum of a series $\sum_{n=1}^{\infty} x_n$ in R the limit (D) $\lim_n \sum_{r=1}^n x_r$, if it exists in R.

(f) The semivariation of m is defined by $v(m)(A) := \bigvee \{ |m(B)| : B \in \Sigma, B \subset A \}$.

(g) We say that *m* is *k*-triangular on Σ iff $m(A) - k m(B) \le m(A \cup B) \le m(A) + k m(B)$ whenever $A, B \in \Sigma$, $A \cap B = \emptyset$ and $0 = m(\emptyset) \le m(A)$ for each $A \in \Sigma$.

Proposition 2. Let $m: \Sigma \to R$ be a k-triangular set function. Then v(m) is k-triangular too. Moreover for any $n \in \mathbb{N}$, $n \ge 2$, and for every pairwise disjoint sets $E_1, E_2, ..., E_n \in \Sigma$ we get

$$m(E_1) - k \sum_{q=2}^n m(E_q) \le m(\bigcup_{q=1}^n E_q) \le m(E_1) + k \sum_{q=2}^n m(E_q).$$

From now on we assume that R is a Dedekind complete and weakly σ -distributive lattice group.

Proposition 3. Assume that $m: \mathcal{P}(\mathbb{N}) \to R$ be a k-triangular set function, such that $(D) \lim_{n} v(m)([n, +\infty[) = 0. Then it is$

$$(D) \lim_{n} (\bigvee_{A \subset \mathbb{N}} | m(A) - m(A \cap [1, n])|) = 0$$

and $(D) \lim_{n} m(A \cap [1, n]) = m(A)$ for each $A \subset \mathbb{N}$.

Definitions 4. (a) Given a set function $m: \Sigma \to R$ and an algebra $\mathcal{L} \subset \Sigma$, the *semivariation of* m *with respect to* \mathcal{L} is defined by $v_{\mathcal{L}}(m)(A) = \bigvee \{ |m(B)| : B \in \mathcal{L}, B \subset A \}.$

(b) A set function $m: \Sigma \to R$ is said to be *continuous from above at* \emptyset iff for every decreasing sequence $(H_n)_n$ in Σ with $\bigcap_{n=1}^{\infty} H_n = \emptyset$ we get $(D) \lim_n v_{\mathcal{L}}(m)(H_n) = \bigwedge_n v_{\mathcal{L}}(m)(H_n) = 0$, where \mathcal{L} is the σ -algebra generated by $(H_n)_n$ in H_1 .

(c) The set functions $m_j: \Sigma \to R, j \in \mathbb{N}$, are uniformly continuous from above at \emptyset iff

$$(D)\lim_{n}(\bigvee_{j}v_{\mathcal{L}}(m_{j})(H_{n})) = \bigwedge_{n}(\bigvee_{j}v_{\mathcal{L}}(m_{j})(H_{n})) = 0$$

for each decreasing sequence $(H_n)_n$ in Σ with $\bigcap_{n=1}^{\infty} H_n = \emptyset$.

(d) A set function $m: \Sigma \to R$ is said to be *v*-absolutely continuous on Σ iff for each decreasing sequence $(H_n)_n$ in Σ , with $\lim_n \nu(H_n) = 0$, it is

$$(D)\lim_{n}v_{\mathcal{L}}(m)(H_{n})=\bigwedge_{n}v_{\mathcal{L}}(m)(H_{n})=0.$$

(e) The set functions $m_i: \Sigma \to R$, $j \in \mathbb{N}$, are uniformly ν -absolutely continuous on Σ iff

$$(D)\lim_{n}(\bigvee_{j} v_{\mathcal{L}}(m_{j})(H_{n})) = \bigwedge_{n}(\bigvee_{j} v_{\mathcal{L}}(m_{j})(H_{n})) = 0$$

whenever $(H_n)_n$ is a decreasing sequence in Σ such that $\lim_n \nu(H_n) = \emptyset$.

(f) The set functions $m_j: \Sigma \to R$, $j \in \mathbb{N}$, are *equibounded* iff there is an element $u \in R$ with $|m_i(A)| \le u$ for all $j \in \mathbb{N}$ and $A \subset \Sigma$.

(g) Given a sequence of set functions $m_j: \Sigma \to R$, $j \in \mathbb{N}$, we say that $(m_j)_j$ (*RD*)-converges (or converges pointwise with respect to a single regulator) to m_0 , or (*RD*) $\lim_j m_j = m_0$, iff there is a (*D*)-sequence $(b_{t,l})_{t,l}$ such that for each $\varphi \in \mathbb{N}^{\mathbb{N}}$ and $A \in \Sigma$ there is $j_0 \in \mathbb{N}$ with $|m_j(A) - m_0(A)| \leq \bigvee_{t=1}^{\infty} b_{t,\varphi(t)}$ for all $j \geq j_0$.

(h) We say that (D) $\lim_{j} m_{j}(A) = m_{0}(A)$ uniformly with respect to $A \in \Sigma$, or (UD) $\lim_{j} m_{j} = m_{0}$, iff there is a (D)-sequence $(c_{t,l})_{t,l}$ with the property that for every $\varphi \in \mathbb{N}^{\mathbb{N}}$ there is $j_{0} \in \mathbb{N}$ with $|m_{j}(A) - m_{0}(A)| \leq \bigvee_{t=1}^{\infty} c_{t,\varphi(t)}$ for every $A \in \Sigma$ and $j \geq j_{0}$.

Lemma 5. Let $m: \Sigma \to R$ be a k-triangular set function, $(H_n)_n$ be any decreasing sequence from Σ , put $H = \bigcap_{n=1}^{\infty} H_n$ and assume that m(H) = 0. Set $B_n = H_n \setminus H_{n+1}$ for all $n \in \mathbb{N}$, and denote by \mathcal{K} and \mathcal{L} the σ -algebras generated by the B_n 's in H_1 and by the H_n 's in H_1 respectively. Then we get $v_{\mathcal{L}}(m)(H_n) \leq k v_{\mathcal{K}}(m)(\bigcup_{l=n}^{\infty} B_l)$ for every $n \in \mathbb{N}$.

We now give a characterization of continuity from above at \emptyset for lattice group-valued set functions defined on $\mathcal{P}(\mathbb{N})$. Here, $v(m) = v_{\mathcal{P}(\mathbb{N})}(m)$.

Proposition 6. An *R*-valued set function *m*, defined on $\mathcal{P}(\mathbb{N})$, is continuous from above at \emptyset if and only if $(D) \lim_{n \to \infty} v(m)(]n, +\infty[) = \Lambda_n v(m)(]n, +\infty[) = 0$.

Remark 7. Observe that an analogous version of Proposition 6 holds also for set functions, which are uniformly continuous from above at \emptyset .

Lemma 8. Let $m_j: \mathcal{P}(\mathbb{N}) \to \mathbb{R}$, $j \in \mathbb{N}$, be a sequence of continuous from above at \emptyset and equibounded k-triangular set functions, with $(\mathbb{RD}) \lim_j m_j = 0$. Then there is a (D)-sequence $(d_{t,l})_{t,l}$ in \mathbb{R} such that, for every $\varphi \in \mathbb{N}^{\mathbb{N}}$ and for each sequence $(j_s)_s$ in \mathbb{N} with $j_s \geq s$ for any $s \in \mathbb{N}$, there exists $s_0 \in \mathbb{N}$ with $m_{j_s}(A) \leq \bigvee_{t=1}^{\infty} d_{t,\varphi(t)}$ whenever $s \geq s_0$ and $A \subset \mathbb{N}$.

We now give our version of the Schur theorem for k-triangular lattice group-valued set functions.

Theorem 9. Let $R, m_i, j \in \mathbb{N}$, be as in Lemma 8. Then it is

(D)
$$\lim_{j} (\sum_{n=1}^{\infty} m_j(\{n\})) = 0.$$

Furthermore, (UD) $\lim_{j \to 0} m_j = 0$ and the set functions $m_j, j \in \mathbb{N}$, are uniformly continuous from above at \emptyset .

Theorem 10. (Vitali-Hahn-Saks theorem) Let $m_j: \Sigma \to R$, $j \in \mathbb{N}$, be a sequence of equibounded, ν -absolutely continuous and k-triangular set functions, with (RD) $\lim_j m_j = 0$. Then the m_j 's are uniformly ν -absolutely continuous.

Theorem 11. (Nikodým convergence theorem) Let $m_j: \Sigma \to R$, $j \in \mathbb{N}$, be a sequence of equibounded set functions, continuous from above at \emptyset , with (RD) $\lim_j m_j = 0$. Then the m_j 's are uniformly continuous from above at \emptyset .