Limit theorems for lattice group-valued \boldsymbol{k}-triangular set functions A. Boccuto and X. Dimitriou

Abstract. Using sliding hump-type techniques, we prove some Schur, Vitali-Hahn-Saks and Nikodým-type theorems for lattice group-valued k-triangular set functions.

Let R be a Dedekind complete lattice group, G be an infinite set, Σ be a σ-algebra of subsets of G, $m: \Sigma \rightarrow R$ be a bounded set function, $v: \Sigma \rightarrow \mathbb{R} \cup\{+\infty\}$ be a non-negative and monotone set function, k be a fixed positive integer and let the involved intervals and halflines be intended in \mathbb{N}.

Definitions 1. (a) A sequence $\left(p_{n}\right)_{n}$ in R is an (O)-sequence iff it is decreasing and $\Lambda_{n} p_{n}=0$.
(b) A bounded double sequence $\left(a_{t, l}\right)_{t, l}$ in R is a (D)-sequence or a regulator iff $\left(a_{t, l}\right)_{l}$ is an (O)-sequence for any $t \in \mathbb{N}$.
(c) We say that R is weakly σ-distributive iff $\Lambda_{\varphi \in \mathbb{N}^{\mathbb{N}}}\left(\mathrm{V}_{t=1}^{\infty} a_{t, \varphi(t)}\right)=0$ for any (D)-sequence $\left(a_{t, l}\right)_{t, l}$.
(d) A sequence $\left(x_{n}\right)_{n}$ in R is (D)-convergent to x iff there is a (D)-sequence $\left(a_{t, l}\right)_{t, l}$ in R such that for every $\varphi \in \mathbb{N}^{\mathbb{N}}$ there is $n^{*} \in \mathbb{N}$ with $\left|x_{n}-x\right| \leq \mathrm{V}_{t=1}^{\infty} a_{t, \varphi(t)}$ whenever $n \geq n^{*}$, and in this case we write $(D) \lim _{n} x_{n}=x$.
(e) We call sum of a series $\sum_{n=1}^{\infty} x_{n}$ in R the limit (D) $\lim _{n} \sum_{r=1}^{n} x_{r}$, if it exists in R.
(f) The semivariation of m is defined by $v(m)(A):=\bigvee\{|m(B)|: B \in \Sigma, B \subset A\}$.
(g) We say that m is k-triangular on Σ iff $m(A)-k m(B) \leq m(A \cup B) \leq m(A)+k m(B)$ whenever $A, B \in \Sigma, A \cap B=\emptyset$ and $0=m(\emptyset) \leq m(A)$ for each $A \in \Sigma$.

Proposition 2. Let $m: \Sigma \rightarrow R$ be a k-triangular set function. Then $v(m)$ is k-triangular too. Moreover for any $n \in \mathbb{N}, n \geq 2$, and for every pairwise disjoint sets $E_{1}, E_{2}, \ldots, E_{n} \in \Sigma$ we get

$$
m\left(E_{1}\right)-k \sum_{q=2}^{n} m\left(E_{q}\right) \leq m\left(\bigcup_{q=1}^{n} E_{q}\right) \leq m\left(E_{1}\right)+k \sum_{q=2}^{n} m\left(E_{q}\right) .
$$

From now on we assume that R is a Dedekind complete and weakly σ-distributive lattice group.
Proposition 3. Assume that $m: \mathcal{P}(\mathbb{N}) \rightarrow R$ be a k-triangular set function, such that (D) $\lim _{n} v(m)(] n,+\infty[)=0$. Then it is

$$
\text { (D) } \lim _{n}\left(\bigvee_{A \subset \mathbb{N}}|m(A)-m(A \cap[1, n])|\right)=0
$$

and $(D) \lim _{n} m(A \cap[1, n])=m(A)$ for each $A \subset \mathbb{N}$.
Definitions 4. (a) Given a set function $m: \Sigma \rightarrow R$ and an algebra $\mathcal{L} \subset \Sigma$, the semivariation of m with respect to \mathcal{L} is defined by $v_{\mathcal{L}}(m)(A)=\bigvee\{|m(B)|: B \in \mathcal{L}, B \subset A\}$.
(b) A set function $m: \Sigma \rightarrow R$ is said to be continuous from above at \varnothing iff for every decreasing sequence $\left(H_{n}\right)_{n}$ in Σ with $\cap_{n=1}^{\infty} H_{n}=\emptyset$ we get $(D) \lim _{n} v_{\mathcal{L}}(m)\left(H_{n}\right)=\Lambda_{n} v_{\mathcal{L}}(m)\left(H_{n}\right)=0$, where \mathcal{L} is the σ-algebra generated by $\left(H_{n}\right)_{n}$ in H_{1}.
(c) The set functions $m_{j}: \Sigma \rightarrow R, j \in \mathbb{N}$, are uniformly continuous from above at \emptyset iff

$$
(D) \lim _{n}\left(\bigvee_{j} v_{\mathcal{L}}\left(m_{j}\right)\left(H_{n}\right)\right)=\bigwedge_{n}\left(\bigvee_{j} v_{\mathcal{L}}\left(m_{j}\right)\left(H_{n}\right)\right)=0
$$

for each decreasing sequence $\left(H_{n}\right)_{n}$ in Σ with $\bigcap_{n=1}^{\infty} H_{n}=\emptyset$.
(d) A set function $m: \Sigma \rightarrow R$ is said to be v-absolutely continuous on Σ iff for each decreasing sequence $\left(H_{n}\right)_{n}$ in Σ, with $\lim _{n} v\left(H_{n}\right)=0$, it is

$$
(D) \lim _{n} v_{\mathcal{L}}(m)\left(H_{n}\right)=\bigwedge_{n} v_{\mathcal{L}}(m)\left(H_{n}\right)=0 .
$$

(e) The set functions $m_{j}: \Sigma \rightarrow R, j \in \mathbb{N}$, are uniformly v-absolutely continuous on Σ iff

$$
\text { (D) } \lim _{n}\left(\bigvee_{j} v_{\mathcal{L}}\left(m_{j}\right)\left(H_{n}\right)\right)=\bigwedge_{n}\left(\bigvee_{j} v_{\mathcal{L}}\left(m_{j}\right)\left(H_{n}\right)\right)=0
$$

whenever $\left(H_{n}\right)_{n}$ is a decreasing sequence in Σ such that $\lim _{n} v\left(H_{n}\right)=\varnothing$.
(f) The set functions $m_{j}: \Sigma \rightarrow R, j \in \mathbb{N}$, are equibounded iff there is an element $u \in R$ with $\left|m_{j}(A)\right| \leq u$ for all $j \in \mathbb{N}$ and $A \subset \Sigma$.
(g) Given a sequence of set functions $m_{j}: \Sigma \rightarrow R, j \in \mathbb{N}$, we say that $\left(m_{j}\right)_{j}(R D)$-converges (or converges pointwise with respect to a single regulator) to m_{0}, or $(R D) \lim _{j} m_{j}=m_{0}$, iff there is a (D) -sequence $\left(b_{t, l}\right)_{t, l}$ such that for each $\varphi \in \mathbb{N}^{\mathbb{N}}$ and $A \in \Sigma$ there is $j_{0} \in \mathbb{N}$ with $\mid m_{j}(A)$ $m_{0}(A) \mid \leq \mathrm{V}_{t=1}^{\infty} b_{t, \varphi(t)}$ for all $j \geq j_{0}$.
(h) We say that $(D) \lim _{j} m_{j}(A)=m_{0}(A)$ uniformly with respect to $A \in \Sigma$, or (UD) $\lim _{j} m_{j}=$ m_{0}, iff there is a (D)-sequence $\left(c_{t, l}\right)_{t, l}$ with the property that for every $\varphi \in \mathbb{N}^{\mathbb{N}}$ there is $j_{0} \in \mathbb{N}$ with $\left|m_{j}(A)-m_{0}(A)\right| \leq \mathrm{V}_{t=1}^{\infty} c_{t, \varphi(t)}$ for every $A \in \Sigma$ and $j \geq j_{0}$.

Lemma 5. Let m: $\Sigma \rightarrow R$ be a k-triangular set function, $\left(H_{n}\right)_{n}$ be any decreasing sequence from Σ, put $H=\cap_{n=1}^{\infty} H_{n}$ and assume that $m(H)=0$. Set $B_{n}=H_{n} \backslash H_{n+1}$ for all $n \in \mathbb{N}$, and denote by \mathcal{K} and \mathcal{L} the σ-algebras generated by the B_{n} 's in H_{1} and by the H_{n} 's in H_{1} respectively. Then we get $v_{\mathcal{L}}(m)\left(H_{n}\right) \leq k v_{\mathcal{K}}(m)\left(\cup_{l=n}^{\infty} B_{l}\right)$ for every $n \in \mathbb{N}$.
We now give a characterization of continuity from above at \emptyset for lattice group-valued set functions defined on $\mathcal{P}(\mathbb{N})$. Here, $v(m)=v_{\mathcal{P}(\mathbb{N})}(m)$.

Proposition 6. An R-valued set function m, defined on $\mathcal{P}(\mathbb{N})$, is continuous from above at \emptyset if and only if $(D) \lim _{n} v(m)(] n,+\infty[)=\Lambda_{n} v(m)(] n,+\infty[)=0$.

Remark 7. Observe that an analogous version of Proposition 6 holds also for set functions, which are uniformly continuous from above at \emptyset.

Lemma 8. Let $m_{j}: \mathcal{P}(\mathbb{N}) \rightarrow R, j \in \mathbb{N}$, be a sequence of continuous from above at \emptyset and equibounded k-triangular set functions, with $(R D) \lim _{j} m_{j}=0$. Then there is a (D)-sequence $\left(d_{t, l}\right)_{t, l}$ in R such that, for every $\varphi \in \mathbb{N}^{\mathbb{N}}$ and for each sequence $\left(j_{s}\right)_{s}$ in \mathbb{N} with $j_{s} \geq s$ for any $s \in \mathbb{N}$, there exists $s_{0} \in \mathbb{N}$ with $m_{j_{s}}(A) \leq \bigvee_{t=1}^{\infty} d_{t, \varphi(t)}$ whenever $s \geq s_{0}$ and $A \subset \mathbb{N}$.

We now give our version of the Schur theorem for k-triangular lattice group-valued set functions.
Theorem 9. Let $R, m_{j}, j \in \mathbb{N}$, be as in Lemma 8. Then it is

$$
\text { (D) } \lim _{j}\left(\sum_{n=1}^{\infty} m_{j}(\{n\})\right)=0 \text {. }
$$

Furthermore, (UD) $\lim _{j} m_{j}=0$ and the set functions $m_{j}, j \in \mathbb{N}$, are uniformly continuous from above at \emptyset.

Theorem 10. (Vitali-Hahn-Saks theorem) Let $m_{j}: \Sigma \rightarrow R, j \in \mathbb{N}$, be a sequence of equibounded, v-absolutely continuous and k-triangular set functions, with $(R D) \lim _{j} m_{j}=0$. Then the m_{j} 's are uniformly v-absolutely continuous.
Theorem 11. (Nikodým convergence theorem) Let $m_{j}: \Sigma \rightarrow R, j \in \mathbb{N}$, be a sequence of equibounded set functions, continuous from above at \emptyset, with $(R D) \lim _{j} m_{j}=0$. Then the m_{j} 's are uniformly continuous from above at \emptyset.

