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Abstract: This chapter may look like a glossary of the fusion rules and
we also introduce new ones presenting their formulas and examples: Conjunc-
tive, Disjunctive, Exclusive Disjunctive, Mixed Conjunctive-Disjunctive rules, Con-
ditional rule, Dempster’s, Yager’s, Smets’ TBM rule, Dubois-Prade’s, Dezert-
Smarandache classical and hybrid rules, Murphy’s average rule, Inagaki-Lefevre-
Colot-Vannoorenberghe Unified Combination rules [and, as particular cases:
Iganaki’s parameterized rule, Weighted Average Operator, minC (M. Daniel),
and newly Proportional Conflict Redistribution rules (Smarandache-Dezert) among
which PCR5 is the most exact way of redistribution of the conflicting mass to
non-empty sets following the path of the conjunctive rule], Zhang’s Center Com-
bination rule, Convolutive x-Averaging, Consensus Operator (Jøsang), Cautious
Rule (Smets), α-junctions rules (Smets), etc. and three new T -norm & T -conorm
rules adjusted from fuzzy and neutrosophic sets to information fusion (Tchamova-
Smarandache). Introducing the degree of union and degree of inclusion with respect
to the cardinal of sets not with the fuzzy set point of view, besides that of intersection,
many fusion rules can be improved. There are corner cases where each rule might
have difficulties working or may not get an expected result. As a conclusion, since no
theory neither rule fully satisfy all needed applications, the author proposes a Uni-
fication of Fusion Theories extending the power and hyper-power sets from previous
theories to a Boolean algebra obtained by the closures of the frame of discernment
under union, intersection, and complement of sets (for non-exclusive elements one
considers a fuzzy or neutrosophic complement). And, at each application, one selects
the most appropriate model, rule, and algorithm of implementation.

The material of this chapter has been presented at NASA Langley Research Center, Hampton, Virginia, on
November 5, 2004.
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206 QUANTITATIVE INFORMATION FUSION RULES

8.1 Introduction

Let’s consider the frame of discernment Θ = {θ1, θ2, . . . , θn}, with n ≥ 2, and two sources of
information:

m1(·),m2(·) : SΘ → [0, 1].

For the simplest frame Θ = {θ1, θ2} one can define a mass matrix as follows:

θ1 θ2 θ1 ∪ θ2 θ1 ∩ θ2 Cθ1 Cθ2 C(θ1 ∩ θ2) ∅
m1(·) m11 m12 m13 m14 m15 m16 m17 m18

m2(·) m21 m22 m23 m24 m25 m26 m27 m28

In calculations we take into account only the focal elements, i.e. those for which m1(·) or
m2(·) > 0. In the Shafer’s model one only has the first three columns of the mass matrix,
corresponding to θ1, θ2, θ1 ∪ θ2, while in the Dezert-Smarandache free model only the first four
columns corresponding to θ1, θ2, θ1 ∪ θ2, θ1 ∩ θ2. But here we took the general case in order to
include the possible complements (negations) as well.

We note the combination of these bba’s, using any of the below rule “r”, by

mr = m1 ⊗r m2.

All the rules below are extended from their power set 2Θ = (Θ,∪) = {∅, θ1, θ2, θ1 ∪ θ2},
which is a set closed under union, or hyper-power set DΘ = (Θ,∪,∩) = {∅, θ1, θ2, θ1∪θ2, θ1∩θ2}
which is a distributive lattice called hyper-power set, to the super-power set SΘ = (Θ,∪,∩, C) =
{∅, θ1, θ2, θ1 ∪ θ2, θ1 ∩ θ2, Cθ1, Cθ2, C(θ1 ∩ θ2)}, which is a Boolean algebra with respect to the
union, intersection, and complement (C is the complement).

Of course, all of these can be generalized for Θ of dimension n ≥ 2 and for any number of
sources s ≥ 2.

Similarly one defines the mass matrix, power-set, hyper-power set, and super-power set for
the general frame of discernment.

A list of the main rules we have collected from various sources available in the open literature
is given in the next sections.

8.2 Conjunctive Rule

If both sources of information are telling the truth, then we apply the conjunctive rule, which
means consensus between them (or their common part):

∀A ∈ SΘ, one has m1(A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2),

where the Total Conflicting Mass is:

k12 =
∑

X1,X2∈SΘ

X1∩X2=∅

m1(X1)m2(X2).
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8.3 Disjunctive Rule

If at least one source of information is telling the truth, we use the optimistic disjunctive rule
proposed by Dubois and Prade in [7]:

m∪(∅) = 0, and ∀A ∈ SΘ \ ∅, one has m∪(A) =
∑

X1,X2∈SΘ

X1∪X2=A

m1(X1)m2(X2).

8.4 Exclusive Disjunctive Rule

If only one source of information is telling the truth, but we don’t know which one, then one
uses the exclusive disjunctive rule [7] based on the fact that X1 Y X2 means either X1 is true,
or X2 is true, but not both in the same time (in set theory let’s use X1 Y X2 for exclusive
disjunctive):

mY(∅) = 0, and ∀A ∈ SΘ \ ∅, one has mY(A) =
∑

X1,X2∈SΘ

X1YX2=A

m1(X1)m2(X2).

8.5 Mixed Conjunctive-Disjunctive Rule

This is a mixture of the previous three rules in any possible way [7]. As an example, suppose
we have four sources of information and we know that: either the first two are telling the truth
or the third, or the fourth is telling the truth. The mixed formula becomes:

m∩∪(∅) = 0,

and

∀A ∈ SΘ \ ∅, one has m∩∪(A) =
∑

X1,X2,X3,X4∈SΘ

((X1∩X2)∪X3)YX4=A

m1(X1)m2(X2)m3(X3)m4(X4).

8.6 Conditioning Rule

This classical conditioning rule proposed by Glenn Shafer in Dempster-Shafer Theory [26] looks
like the conditional probability (when dealing with Bayesian belief functions) but it is different.
Shafer’s conditioning rule is commonly used when there exists a bba, say mS(·), such that for
an hypothesis, say A, one has mS(A) = 1 (i.e. when the subjective certainty of an hypothesis
to occur is given by an expert). Shafer’s conditioning rule consists in combining mS(·) directly
with another given bba for belief revision using Dempster’s rule of combination. We point out
that this conditioning rule could be used also whatever rule of combination is chosen in any
other fusion theory dealing with belief functions. After fusioning m1(.) with mS(A) = 1, the
conflicting mass is transferred to non-empty sets using Dempster’s rule in DST, or DSmH or
PCR5 in DSmT, etc. Another family of belief conditioning rules (BCR) is proposed as a new
alternative in chapter 9 of this book.



208 QUANTITATIVE INFORMATION FUSION RULES

8.7 Dempster’s Rule

This is the most used fusion rule in applications and this rule influenced the development of
other rules. Shafer has developed the Dempster-Shafer Theory of Evidence [26] based on the
model that all hypotheses in the frame of discernment are exclusive and the frame is exhaustive.
Dempster’s rule for two independent sources is given by [26]

mD(∅) = 0,

and

∀A ∈ SΘ \ ∅, one has mD(A) =
1

1− k12
·

∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2).

8.8 Modified Dempster-Shafer rule (MDS)

MDS rule was introduced by Dale Fixsen and Ronald P. S. Mahler in 1997 [11] for identifying
objects in a finite universe U containing N elements, and it merges Bayesian and Dempster-
Shafer theories.
Let B and C be two bodies of evidence:B = {(S1,m1), (S2,m2), . . . , (Sb,mb)} and C = {(T1, n1),
(T2, n2), . . . (Tc, nc)} where Si, 1 ≤ i ≤ b, Tj , 1 ≤ j ≤ c, are subsets of the universe U ,and
(Si,mi) represents for the source B the hypothesis object is in Si with a belief (mass assignment)
of mi with of course

∑
imi = 1. Similarly for (Tj , nj) for each j.

Then B and C can be fused just following Dempster’s rule and one gets a new body of
evidence B ? C. The elements of B ? C are intersections of Si ∩ Tj for all i = 1, . . . , b and
j = 1, . . . , c, giving the following masses:

rij = minj
αDS(Si, Tj)

αDS(B,C)

if αDS(B,C) 6= 0 (it is zero only in the total degenerate case).
The Dempster-Shafer agreement αDS(., .) is defined by [11]:

αDS(B,C) =

b∑

i=1

c∑

j=1

minjαDS(Si, Tj) with αDS(S, T ) =
ρ(S ∩ T )

ρ(S)ρ(T )

where the set function ρ(S) = 1 if S 6= ∅ and ρ(∅) = 0; αDS(S, T ) = 1 if S ∩ T 6= ∅ and zero
otherwise.

The agreement between bodies of evidence is just 1−k, where k is the conflict from Dempster-
Shafer Theory. In 1986, J. Yen had proposed a similar rule, but his probability model was
different from Fixsen-Mahler MDS’s (see [50] for details).

8.9 Murphy’s Statistical Average Rule

If we consider that the bba’s are important from a statistical point of view, then one averages
them as proposed by Murphy in [24]:

∀A ∈ SΘ, one has mM (A) =
1

2
[m1(A) +m2(A)].
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Or, more general, mmixing(A) = 1
2 [w1m1(A)+w2m2(A)], where w1, w2 are weights reflecting

the reliability of sources.

8.10 Dezert-Smarandache Classic Rule (DSmC)

DSmC rule [31] is a generalization of the conjunctive rule from the power set to the hyper-power
set.

∀A ∈ SΘ, one has mDSmC(A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2).

It can also be extended on the Boolean algebra (Θ,∪,∩, C) in order to include the complements
(or negations) of elements.

8.11 Dezert-Smarandache Hybrid Rule (DSmH)

DSmH rule [31] is an extension of the Dubois-Prade rule for the dynamic fusion. The middle
sum in the below formula does not occur in Dubois-Prade’s rule, and it helps in the transfer of
the masses of empty sets — whose disjunctive forms are also empty — to the total ignorance.

mDSmH(∅) = 0,

and

∀A ∈ SΘ \ ∅ one has

mDSmH(A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2) +
∑

X1,X2∈∅
(A=U)∨{U∈∅∧A=I}

m1(X1)m2(X2)

+
∑

X1,X2∈SΘ

X1∪X2=A
X1∩X2∈∅

m1(X1)m2(X2)

where all sets are in canonical form (i.e. for example the set (A ∩ B) ∩ (A ∪ B ∪ C)) will be
replaced by its canonical form A ∩B), and U is the disjunctive form of X1 ∩X2 and is defined
as follows:

U(X) = X if X is a singleton,

U(X1 ∩X2) = U(X1) ∪ U(X2), and

U(X1 ∪X2) = U(X1) ∪ U(X2);

while I = θ1 ∪ θ2 ∪ · · · ∪ θn is the total ignorance.
Formally the canonical form has the properties:

i) c(∅) = ∅;

ii) if A is a singleton, then c(A) = A;

iii) if A ⊆ B, then c(A ∩B) = A and c(A ∪B) = B;

iv) the second and third properties apply for any number of sets.
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8.12 Smets’ TBM Rule

In the TBM (Transferable Belief model) approach, Philippe Smets [36] does not transfer the
conflicting mass, but keeps it on the empty set, meaning that m(∅) > 0 signifies that there
might exist other hypotheses we don’t know of in the frame of discernment (this is called an
open world).

mS(∅) = k12 =
∑

X1,X2∈SΘ

X1∩X2=∅

m1(X1)m2(X2).

and

∀A ∈ SΘ \ ∅, one has mS(A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2).

8.13 Yager’s Rule

R. Yager transfers the total conflicting mass to the total ignorance [44], i.e.

mY (∅) = 0, mY (I) = m1(I)m2(I) +
∑

X1,X2∈SΘ

X1∩X2=∅

m1(X1)m2(X2)

where I = total ignorance, and

∀A ∈ SΘ \ {∅, I}, one has mY (A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2).

8.14 Dubois-Prade’s Rule

This rule [8] is based on the principle that if two sources are in conflict, then at least one is
true, and thus transfers the conflicting mass m(A ∩B) > 0 to A ∪B.

mDP (∅) = 0,

and

∀A ∈ SΘ \ ∅ one has

mDP (A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2) +
∑

X1,X2∈SΘ

X1∪X2=A
X1∩X2=∅

m1(X1)m2(X2).

8.15 Weighted Operator (Unification of the Rules)

The Weighted Operator (WO) proposed by T. Inagaki in [15] and later by Lefevre-Colot-
Vannoorenberghe in [19] is defined as follows:

mWO(∅) = wm(∅) · k12,
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and
∀A ∈ SΘ \ ∅, one has mWO(A) =

∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2) + wm(A) · k12

where wm(A) ∈ [0, 1] for any A ∈ SΘ and
∑

X∈SΘ wm(X) = 1 and wm(A) are called weighting
factors.

8.16 Inagaki’s Unified Parameterized Combination Rule

Inagaki’s Unified Parameterized Combination Rule [15] is defined by

∀A ∈ SΘ \ {∅, I}, one has mU
p (A) = [1 + p · k12]

∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2),

and
mU
p (∅) = 0,mU

p (I) = [1 + p · k12]
∑

X1,X2∈SΘ

X1∩X2=I

m1(X1)m2(X2) + [1 + p · k12 − p]k12

where the parameter 0 ≤ p ≤ 1/[1 − k12 −m∩(I)], and k12 is the conflict.
The determination of parameter p, used for normalization, is not well justified in the litera-

ture, but may be found through experimental data, simulations, expectations [39]. The greater
is the parameter p, the greater is the change to the evidence.

8.17 The Adaptive Combination Rule (ACR)

Mihai Cristian Florea, Anne-Laure Jousselme, Dominic Grenier and Eloi Bossé propose a new
class of combination rules for the evidence theory as a mixing between the disjunctive (p) and
conjunctive (q) rules [12, 13]. The adaptive combination rule (ACR) between m1 and m2 is
defined by (m1 �m2)(∅) = 0 and :

(m1 �m2)(A) = α(k)p(A) + β(k)q(A) , ∀A ⊆ Θ, A 6= ∅ (8.1)

Here, α and β are functions of the conflict k = q(∅) from [0, 1] to [0,+∞[. The ACR may be
expressed according only to the function β (because of the condition

∑
A⊆Θ(m1 �m2)(A) = 1)

as follows:

(m1 �m2)(A) = [1− (1− k)β(k)]p(A) + β(k)q(A) , ∀A ⊆ Θ, A 6= ∅ (8.2)

and (m1 �m2)(∅) = 0 where β is any function such that β : [0, 1]→ [0,+∞[.
In the general case α and β are functions of k with no particular constraint. However, a

desirable behaviour of the ACR is that it should act more like the disjunctive rule p whenever k
is close to 1 (i.e. at least one source is unreliable), while it should act more like the conjunctive
rule q, if k is close to 0 (i.e. both sources are reliable). This amounts to add three conditions
on the general formulation:

(C1) α is an increasing function with α(0) = 0 and α(1) = 1;

(C2) β is a decreasing function with β(0) = 1 and β(1) = 0.
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(C3) α(k) = 1− (1− k)β(k)

In particular, when k = 0 the sources are in total agreement and (m1 �m2)(A) = p(A),∀A ⊆ Θ,
the conjunction represents the combined evidence, while when k = 1 the sources are in total
conflict and (m1 �m2)(A) = q(A),∀A ⊆ Θ, the disjunction is the best choice considering that
one of them is wrong.

Note that the three conditions above are dependent and (C1) can be removed, since it is a
consequence of the (C2) and (C3). The particular case of the adaptive combination rule can be
stated as Equation (8.2), ∀A ⊆ Θ, A 6= ∅ and m(∅) = 0, where β is any decreasing function
such that β : [0, 1]→ [0, 1] and β(0) = 1 and β(1) = 0.

8.18 The Weighted Average Operator (WAO)

The Weighted Average Operator (WAO) for two sources proposed in [17] consists in first,
applying the conjunctive rule to the bba’s m1(·) and m2(·) and second, redistribute the total
conflicting mass k12 to all nonempty sets in SΘ proportionally with their mass averages, i.e. for
the set, say A, proportionally with the weighting factor:

wJDV (A,m1,m2) =
1

2
(m1(A) +m2(A)).

The authors do not give an analytical formula for it. WAO does not work in degenerate cases
as shown in chapter 1.

8.19 The Ordered Weighted Average operator (OWA)

It was introduced by Ronald R. Yager [46, 48]. The OWA of dimension n is defined as
F : Rn 7→ R such that

F (a1, a2, . . . , an) =

n∑

j=1

wjbj

where b1 ≥ b2 . . . ≥ bn and the weights wj ∈ [0, 1] with
∑n

j=1wj = 1.

OWA satisfies the following properties:
a) Symmetry: For any permutation Π, one has F (aΠ(1), aΠ(2),...,aΠ(n)

) = F (a1, a2, . . . , an).

b) Monotonicity: If ∀j, aj ≥ dj then F (a1, a2, . . . , an) ≥ F (d1, d2, . . . , dn).
c) Boundedness: minj(aj) ≤ F (a1, a2, . . . , an) ≤ maxj(aj).
d) Idempotency: If ∀j, aj = a, then F (a1, a2, . . . , an) = F (a, a, . . . , a) = a.

A measure associated with this operator with weighting vector W = (w1, w2, . . . , wn) is the
Attitude-Character (AC) defined as: AC(W ) =

∑n
j=1wj

n−j
n−1 .

8.20 The Power Average Operator (PAO)

It was introduced by Ronald Yager in [47] in order to allow values being aggregated to support
and reinforce each other. This operator is defined by:

PAO(a1, a2, . . . , an) =

∑n
i=1(1 + T (ai)ai)∑n
i=1(1 + T (a− i))
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where T (ai) =
∑n

j=1j 6=i sup(ai, aj) and sup(a, b) denotes the support for a from b which satisfies
the properties:
a) sup(a, b) ∈ [0, 1];
b) sup(a, b) = sup(b, a);
c) sup(a, b) ≥ sup(x, y) if |a− b| < |x− y|.

8.21 Proportional Conflict Redistribution Rules (PCR)

8.21.1 PCR1 Fusion rule

In 2004, F. Smarandache and J. Dezert independently developed a Proportional Conflict Re-
distribution Rule (PCR1), which similarly consists in first, applying the conjunctive rule to the
bba’s m1(·) and m2(·) and second, redistribute the total conflicting mass k12 to all nonempty
sets in SΘ proportionally with their nonzero mass sum, i.e. for the set, say A, proportionally
with the weighting factor:

wSD(A,m1,m2) = m1(A) +m2(A) 6= 0.

The analytical formula for PCR1, non-degenerate and degenerate cases, is:

mPCR1(∅) = 0,

and

∀A ∈ SΘ \ ∅, one has mPCR1(A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2) +
c12(A)

d12
· k12,

where c12(A) is the sum of masses corresponding to the set A, i.e. c12(A) = m1(A)+m2(A) 6= 0,
d12 is the sum of nonzero masses of all nonempty sets in SΘ assigned by the sources m1(·) and
m2(·) [in many cases d12 = 2, but in degenerate cases it can be less], and k12 is the total con-
flicting mass.

Philippe Smets pointed out that PCR1 gives the same result as the WAO for non-degenerate
cases, but PCR1 extends actually WAO, since PCR1 works also for the degenerate cases when
all column sums of all non-empty sets are zero because in such cases, the conflicting mass is
transferred to the non-empty disjunctive form of all non-empty sets together; when this dis-
junctive form happens to be empty, then one can consider an open world (i.e. the frame of
discernment might contain new hypotheses) and thus all conflicting mass is transferred to the
empty set.

For the cases of the combination of only one non-vacuous belief assignment m1(·) with
the vacuous belief assignment1 mv(·) where m1(·) has mass assigned to an empty element, say
m1(·) > 0 as in Smets’ TBM, or as in DSmT dynamic fusion where one finds out that a previous
non-empty element A, whose mass m1(A) > 0, becomes empty after a certain time, then this
mass of an empty set has to be transferred to other elements using PCR1, but for such case
[m1 ⊗ mv](·) is different from m1(·). This severe draw-back of WAO and PCR1 forces us to
develop more sophisticated PCR rules satisfying the neutrality property of VBA with better
redistributions of the conflicting information.

1The VBA (vacuous belief assignment) is the bba mv(total ignorance) = 1.
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8.21.2 PCR2-PCR4 Fusion rules

F. Smarandache and J. Dezert then developed more improved versions of Proportional Conflict
Redistribution Rule (PCR2-4). A detailed presentation of these rules can be found in Chapter
1 of this book.

In the PCR2 fusion rule, the total conflicting mass k12 is redistributed only to the non-empty
sets involved in the conflict (not to all non-empty sets as in WAO and PCR1) proportionally with
respect to their corresponding non-empty column sum in the mass matrix. The redistribution is
then more exact (accurate) than in PCR1 and WAO. A nice feature of PCR2 is the preservation
of the neutral impact of the VBA and of course its ability to deal with all cases/models.

mPCR2(∅) = 0,

and ∀A ∈ SΘ \ ∅ and A involved in the conflict, one has

mPCR2(A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2) +
c12(A)

e12
· k12,

while for a set B ∈ SΘ \ ∅ not involved in the conflict one has:

mPCR2(B) =
∑

X1,X2∈SΘ

X1∩X2=B

m1(X1)m2(X2),

where c12(A) is the non-zero sum of the column of X in the mass matrix, i.e. c12(A) =
m1(A) +m2(A) 6= 0, k12 is the total conflicting mass, and e12 is the sum of all non-zero column
sums of all non-empty sets only involved in the conflict (in many cases e12 = 2, but in some
degenerate cases it can be less). In the degenerate case when all column sums of all non-empty
sets involved in the conflict are zero, then the conflicting mass is transferred to the non-empty
disjunctive form of all sets together which were involved in the conflict. But if this disjunctive
form happens to be empty, then one considers an open world (i.e. the frame of discernment
might contain new hypotheses) and thus all conflicting mass is transferred to the empty set.

A non-empty set X ∈ SΘ is considered involved in the conflict if there exists another set
Y ∈ SΘ such that X ∩Y = 0 and m12(X ∩ Y ) > 0. This definition can be generalized for s ≥ 2
sources.

PCR3 transfers partial conflicting masses, instead of the total conflicting mass. If an in-
tersection is empty, say A ∩ B = ∅, then the mass m(A ∩ B) > 0 of the partial conflict is
transferred to the non-empty sets A and B proportionally with respect to the non-zero sum
of masses assigned to A and respectively to B by the bba’s m1(·) and m2(·). The PCR3 rule
works if at least one set between A and B is non-empty and its column sum is non-zero. When
both sets A and B are empty, or both corresponding column sums of the mass matrix are zero,
or only one set is non-empty and its column sum is zero, then the mass m(A∩B) is transferred
to the non-empty disjunctive form u(A) ∪ u(B) [which is defined as follows: u(A) = A if A is a
singleton, u(A∩B) = u(A∪B) = u(A)∪u(B)]; if this disjunctive form is empty then m(A∩B)
is transferred to the non-empty total ignorance in a closed world approach or to the empty
set if one prefers to adopt the Smets’ open world approach; but if even the total ignorance is
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empty (a completely degenerate case) then one considers an open world (i.e. new hypotheses
might be in the frame of discernment) and the conflicting mass is transferred to the empty set,
which means that the original problem has no solution in the close world initially chosen for
the problem.

mPCR3(∅) = 0,

and ∀A ∈ SΘ \ ∅, one has

mPCR3(A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2) + c12(A)

·
∑

X∈SΘ\A
X∩A=∅

m1(A)m2(X) +m2(A)m1(X)

c12(A) + c12(X)

+
∑

X1,X2∈SΘ\A
X1∩X2=∅

u(X1)∪u(X2)=A

[m1(X1)m2(X2) +m1(X2)m2(X1)]

+ ΨΘ(A) ·
∑

X1,X2∈SΘ\A
X1∩X2=∅

u(X1)=u(X2)=A

[m1(X1)m2(X2) +m2(X1)m1(X2)]

where c12(A) is the non-zero sum of the mass matrix column corresponding to the set A, and
the total ignorance characteristic function ΨΘ(A) = 1 if A is the total ignorance, and 0 otherwise.

The PCR4 fusion rule improves Milan Daniel’s minC rule [3–5]. After applying the conjunc-
tive rule, Daniel uses the proportionalization with respect to the results of the conjunctive rule,
and not with respect to the masses assigned to each nonempty set by the sources of information
as done in PCR1-3 or the next PCR5. PCR4 also uses the proportionalization with respect to
the results of the conjunctive rule, but with PCR4 the conflicting mass m12(A ∩ B) > 0 when
A ∩ B = ∅ is distributed to A and B only because only A and B were involved in the conflict
{A∪B was not involved in the conflict since m12(A∩B) = m1(A)m2(B)+m2(A)m1(B)}, while
minC [both its versions a) and b)] redistributes the conflicting mass m12(A ∩B) to A, B, and
A∪B. Also, for the mixed sets such as C∩(A∪B) = ∅ the conflicting mass m12(C∩(A∪B)) > 0
is distributed to C and A ∪B because only them were involved in the conflict by PCR4, while
minC version a) redistributes m12(C ∩ (A ∪B)) to C, A ∪B, C ∪ A ∪ B and minC version b)
redistributes m12(C ∩ (A ∪B)) even worse to A, B, C, A ∪B, A ∪ C, B ∪ C, A ∪B ∪ C. The
PCR5 formula for the fusion of two sources is given by

mPCR4(∅) = 0,

and ∀A ∈ SΘ \ ∅, one has

mPCR4(A) = m12(A) +
∑

X∈SΘ\A
X∩A=∅

m12(X)
m12(A ∩X)

m12(A) +m12(X)
,

where m12(·) is the conjunctive rule, and all denominators m12(A) +m12(X) 6= 0; (if a denom-
inator corresponding to some X is zero, the fraction it belongs to is discarded and the mass
m12(A ∩X) is transferred to A and X using PCR3.
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8.21.3 PCR5 Fusion Rule

PCR5 fusion rule is the most mathematically exact form of redistribution of the conflicting
mass to non-empty sets which follows backwards the tracks of the conjunctive rule formula.
But it is the most difficult to implement. In order to better understand it, let’s start with some
examples:

• Example 1:

A B A ∪B
m1 0.6 0 0.4
m2 0 0.3 0.7

The conjunctive rule yields:

m12 0.42 0.12 0.28

and the conflicting mass k12 = 0.18.

Only A and B were involved in the conflict,

k12 = m12(A ∩B) = m1(A)m2(B) +m2(A)m1(B) = m1(A)m2(B) = 0.6 · 0.3 = 0.18.

Therefore, 0.18 should be distributed to A and B proportionally with respect to 0.6 and
0.3 {i.e. the masses assigned to A and B by the sources m1(·) and m2(·)} respectively.
Let x be the conflicting mass to be redistributed to A and y the conflicting mass to be
redistributed to B (out of 0.18), then:

x

0.6
=

y

0.3
=

x+ y

0.6 + 0.3
=

0.18

0.9
= 0.2,

whence x = 0.6 · 0.2 = 0.12, y = 0.3 · 0.2 = 0.06, which is normal since 0.6 is twice bigger
than 0.3. Thus:

mPCR4(A) = 0.42 + 0.12 = 0.54,

mPCR4(B) = 0.12 + 0.06 = 0.18,

mPCR4(A ∪B) = 0.28 + 0 = 0.28.

This result is the same as PCR2-3.

• Example 2:

Let’s modify a little the previous example and have the mass matrix

A B A ∪B
m1 0.6 0 0.4
m2 0.2 0.3 0.5

The conjunctive rule yields:
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m12 0.50 0.12 0.20

and the conflicting mass k12 = 0.18.

The conflict k12 is the same as in previous example, which means that m2(A) = 0.2 did
not have any impact on the conflict; why?, because m1(B) = 0.

A and B were involved in the conflict, A ∪ B is not, hence only A and B deserve a part
of the conflict, A ∪B does not deserve.

With PCR5 one redistributes the conflicting mass 0.18 to A and B proportionally with the
masses m1(A) and m2(B) respectively, i.e. identically as above. The mass m2(A) = 0.2
is not considered to the weighting factors of redistribution since it did not increase or
decrease the conflicting mass. One obtains x = 0.12 and y = 0.06, which added to the
previous masses yields:

mPCR4(A) = 0.50 + 0.12 = 0.62,

mPCR4(B) = 0.12 + 0.06 = 0.18,

mPCR4(A ∪B) = 0.20.

This result is different from all PCR1-4.

• Example 3:

Let’s modify a little the previous example and have the mass matrix

A B A ∪B
m1 0.6 0.3 0.1
m2 0.2 0.3 0.5

The conjunctive rule yields:

m12 0.44 0.27 0.05

and the conflicting mass

k12 =m12(A ∩B)=m1(A)m2(B) +m2(A)m1(B)=0.6 · 0.3 + 0.2 · 0.3=0.18 + 0.06=0.24.

Now the conflict is different from the previous two examples, because m2(A) and m1(B)
are both non-null. Then the partial conflict 0.18 should be redistributed to A and B
proportionally to 0.6 and 0.3 respectively (as done in previous examples, and we got
x1 = 0.12 and y1 = 0.06), while 0.06 should be redistributed to A and B proportionally
to 0.2 and 0.3 respectively.

For the second redistribution one similarly calculate the proportions:

x2

0.2
=
y2

0.3
=

x2 + y2

0.2 + 0.3
=

0.06

0.5
= 0.12,

whence x = 0.2 · 0.12 = 0.024, y = 0.3 · 0.12 = 0.036. Thus:

mPCR4(A) = 0.44 + 0.12 + 0.024 = 0.584,

mPCR4(B) = 0.27 + 0.06 + 0.036 = 0.366,

mPCR4(A ∪B) = 0.05 + 0 = 0.050.

This result is different from PCR1-4.
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The formula of the PCR5 fusion rule for two sources is given by [35]:

mPCR5(∅) = 0,

and ∀A ∈ SΘ \ ∅, one has

mPCR5(A) = m12(A) +
∑

X∈SΘ\{A}
X∩A=∅

[
m1(A)2 ·m2(X)

m1(A) +m2(X)
+
m2(A)2 ·m1(X)

m2(A) +m1(X)

]
,

where m12(·) is the conjunctive rule, and all denominators are different from zero; if a denomi-
nator is zero, the fraction it belongs to is discarded.

The general PCR5 formula for s ≥ 2 sources is given by (see Chapter 1)

mPCR5(∅) = 0,

and ∀A ∈ SΘ \ ∅ by

mPCR5(A) = m12...s(A) +
∑

2≤t≤s
1≤r1,...,rt≤s

1≤r1<r2<...<rt−1<(rt=s)

∑

Xj2
,...,Xjt∈SΘ\{A}

{j2,...,jt}∈Pt−1({1,...,n})
A∩Xj2

∩...∩Xjs=∅
{i1,...,is}∈Ps({1,...,s})

(
∏r1
k1=1mik1

(A)2) · [∏t
l=2(

∏rl
kl=rl−1+1mikl

(Xjl)]

(
∏r1
k1=1mik1

(A)) + [
∑t

l=2(
∏rl
kl=rl−1+1mikl

(Xjl)]
,

where i, j, k, r, s and t are integers. m12...s(A) corresponds to the conjunctive consensus on
A between s sources and where all denominators are different from zero. If a denominator is
zero, that fraction is discarded; Pk({1, 2, . . . , n}) is the set of all subsets of k elements from
{1, 2, . . . , n} (permutations of n elements taken by k), the order of elements doesn’t count.

8.21.4 PCR6 Fusion Rule

PCR6 was developed by A. Martin and C. Osswald in 2006 (see Chapters [22] and [23] for more
details and applications of this new rule) and it is an alternative of PCR5 for the general case
when the number of sources to combine become greater than two (i.e. s ≥ 3). PCR6 does not
follow back on the track of conjunctive rule as PCR5 general formula does, but it gets better
intuitive results. For s = 2 PCR5 and PCR6 coincide. The general formula for PCR62 when
extended to super-power set SΘ is:

mPCR6(∅) = 0,

and ∀A ∈ SΘ \ ∅

2Two extensions of PCR6 (i.e. PCR6f and PCR6g) are also proposed by A. Martin and C. Osswald in [22].
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mPCR6(A) = m12...s(A) +

s∑

i=1

mi(A)2
∑

s−1∩
k=1

Yσi(k)∩A≡∅

(Yσi(1)
,...,Yσi(s−1))∈(SΘ)s−1




s−1∏

j=1

mσi(j)(Yσi(j))

mi(A)+

s−1∑

j=1

mσi(j)(Yσi(j))



,

with mi(A) +

s−1∑

j=1

mσi(j)(Yσi(j)) 6= 0 and where m12...s(.) is the conjunctive consensus rule and

σi counts from 1 to s avoiding i, i.e.:

{
σi(j) = j if j < i,
σi(j) = j + 1 if j ≥ i,

8.22 The minC Rule

The minC rule (minimum conflict rule) proposed by M. Daniel in [3–5] improves Dempster’s
rule since the distribution of the conflicting mass is done from each partial conflicting mass to
the subsets of the sets involved in partial conflict proportionally with respect to the results of
the conjunctive rule results for each such subset. It goes by types of conflicts. The author did
not provide an analytical formula for this rule in his previous publications but only in Chapter
4 of this volume. minC rule is commutative, associative, and non-idempotent.

Let m12(X ∩ Y ) > 0 be a conflicting mass, where X ∩ Y = ∅, and X, Y may be singletons
or mixed sets (i.e. unions or intersections of singletons).

minC has two versions, minC a) and minC b), which differs from the way the redistribution
is done: either to the subsets X, Y , and X∪Y in version a), or to all subsets of P (u(X)∪u(Y ))
in version b).

One applies the conjunctive rule, and then the partial conflict, say m12(A ∩ B), when
A ∩ B = ∅, is redistributed to A, B, A ∪ B proportionally to the masses m12(A), m12(B),
and m12(A ∪ B) respectively in both versions a) and b). PCR4 redistributes the conflicting
mass to A and B since only them were involved in the conflict.

But for a mixed set, as shown above, say C ∩ (A ∪ B) = ∅, the conflicting mass m12(C ∩
(A ∪B)) > 0 is distributed by PCR4 to C and A ∪ B because only them were involved in the
conflict, while the minC version a) redistributes m12(C ∩ (A∪B)) to C, A∪B, C ∪A∪B, and
minC version b) redistributes m12(C ∩ (A ∪B)) even worse to A, B, C, A ∪B, A ∪ C, B ∪ C,
A ∪B ∪ C.

Another example is that the mass m12(A∩B∩C)) > 0, when A∩B∩C = ∅, is redistributed
in both versions minC a) and minC b) to A, B, C, A ∪B, A ∪ C, B ∪ C, A ∪B ∪ C.

When the conjunctive rule results are zero for all the nonempty sets that are redistributed
conflicting masses, the conflicting mass is averaged to each such set.
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8.23 The Consensus Operator

Consensus Operator (CO) proposed by A. Jøsang in [16] is defined only on binary frames
of discernment. CO doesn’t work on non-exclusive elements (i.e. on models with nonempty
intersections of sets).

On the frame Θ = {θ1, θ2} of exclusive elements, θ2 is considered the complement/negation
of θ1.

If the frame of discernment has more than two elements, then by a simple or normal coars-
ening it is possible to derive a binary frame containing any element A and its complement C(A).
Let m(·) be a bba on a (coarsened) frame Θ = {A, C(A)}, then one defines an opinion resulted
from this bba is:

wA = (bA, dA, uA, αA),

where bA = m(A) is the belief of A, dA = m(C(A)) is the disbelief of A, uA = m(A ∪ C(A)) is
the uncertainty of A, and αA represents the atomicity of A. Of course bA + dA + uA = 1, for
A 6= ∅.

The relative atomicity expresses information about the relative size of the state space (i.e.
the frame of discernment). For every operator, the relative atomicity of the output belief
is computed as a function of the input belief operands. The relative atomicity of the input
operands is determined by the state space circumstances, or by a previous operation in case
that operation’s output is used as input operand. The relative atomicity itself can also be
uncertain, and that’s what’s called state space uncertainty. Possibly the state space uncertainty
is a neglected problem in belief theory. It relates to Smets’ open world, and to DSm paradoxical
world. In fact, the open world breaks with the “exhaustive” assumption, and the paradoxical
world breaks with the “exclusive” assumption of classic belief theory.

CO is commutative, associative, and non-idempotent.
Having two experts with opinions on the same element A,

w1A = (b1A, d1A, u1A, α1A) and

w2A = (b2A, d2A, u2A, α2A), one first computes

k = u1A + u2A − u1A · u2A.

Let’s note by b12A = (b12A, d12A, u12A, α12A) the consensus opinion between w1A and w2A. Then:

a) for k 6= 0 one has:

b12A = (b1A · u2A + b2A · u1A)/k

d12A = (d1A · u2A + d2A · u1A)/k

u12A = (u1A · u2A)/k

α12A =
α1Au2A + α2Au1A − (α1A + α2A)u1Au2A

u1A + u2A − 2u1Au2A

b) for k = 0 one has:

b12A = (γ12A · b1A + b2A)/(γ12A + 1)

d12A = (γ12A · d1A + d2A)/(γ12A + 1)

u12A = 0

α12A = (γ12A · α1A + α2A)/(γ12A + 1)

where γ12A = u2A/u1A represents the relative dogmatism between opinions b1A and b2A.
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The formulas are not justified, and there is not a well-defined method for computing the
relative atomicity of an element when a bba is known.

For frames of discernment of size greater than n, or with many sources, or in the open world
it is hard to implement CO.

A bba m(·) is called Bayesian on the frame Θ = {θ1, θ2} of exclusive elements if m(θ1∪θ2) =
0, otherwise it is called non Bayesian.

If one bba is Bayesian, say m1(·), and another is not, say m2(·), then the non Bayesian bba
is ignored! See below mCO(·) = m1(·):
Example

A B A ∪B
m1 0.3 0.7 0.0
m2 0.8 0.1 0.1

mCO 0.3 0.7 0.0

Because

bA dA uA αA
m1A 0.3 0.7 0.0 0.5
m2A 0.8 0.1 0.1 0.5

α1A = α2A = |A∩Θ|
|Θ| = 0.5, where |X| means the cardinal of X, whence α12A = 0.5.

Similarly one computes the opinion on B, because:

bB dB uB αB
m1B 0.7 0.3 0.0 0.5
m2B 0.1 0.8 0.1 0.5

If both bba’s are Bayseian, then one uses their arithmetic mean.

8.24 Zhang’s Center Combination Rule

The Center Combination Rule proposed by L. Zhang in [54] is given by

∀A ∈ SΘ, one has mZ(A) = k ·
∑

X1,X2∈SΘ

X1∩X2=A

|X1 ∩X2|
|X1| · |X2|

m1(X1)m2(X2).

where k is a renormalization factor, |X| is the cardinal of the set X, and

r(X1,X2) =
|X1 ∩X2|
|X1| · |X2|

represents the degree (measure) of intersection of the sets X1 and X2.
In Dempster’s approach the degree of intersection was assumed to be 1.
The degree of intersection could be defined in many ways, for example

r(X1,X2) =
|X1 ∩X2|
|X1 ∪X2|

could be better defined this way since if the intersection is empty the degree of intersection is
zero, while for the maximum intersection, i.e. when X1 = X2, the degree of intersection is 1.

One can attach the r(X1,X2) to many fusion rules.
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8.25 The Convolutive x-Averaging

The Convolutive x-Averaging proposed by Ferson-Kreinovich in [10] is defined as

∀A ∈ SΘ, one has mX(A) =
∑

X1,X2∈SΘ

(X1+X2)/2=A

m1(X1)m2(X2)

This rule works for hypotheses defined as subsets of the set of real numbers.

8.26 The α-junctions Rules

The α-junctions rules [37] are generalizations of the above Conjunctive and Disjunctive Rules,
and they are parameterized with respect to α ∈ [0, 1]. Philippe Smets finds the rules for the
elementary frame of discernment Θ with two hypotheses, using a matrix operator KX , for each
X ∈ {∅, A,B,A ∪B} and shows that it is possible to extend them by iteration to larger frames
of discernment. These rules are more theoretical and hard to apply.

8.27 The Cautious Rule

The Cautious Rule3 has been proposed by Philippe Smets in 2000 and is just theoretical. Also,
Smets does not provide a formula or a method for calculating this rule. He states [38] this
Theorem:

Letm1, m2 be two bba’s, and q1, q2 their corresponding commonality functions, and SP (m1),
SP (m2) the set of specializations of m1 and m2 respectively. Then the hyper-cautious combi-
nation rule

m1~2 = min{m | m ∈ SP (m1) ∩ SP (m2)},
and the commonality of m1~2 is q12 where q12(A) = min{q1(A), q2(A)}.

We recall that the commonality function of a bba m(·) is q : SΘ → [0, 1] such that:

q(A) =
∑

X∈SΘ

X⊇A

m(X) for all A ∈ SΘ.

Now a few words about the least commitment and specialization.

a) Least Commitment, or Minimum Principle, means to assign a missing mass of a bba or
to transfer a conflicting mass to the least specific element in the frame of discernment (in
most of the cases to the partial ignorances or to the total ignorance). “The Principle of
Minimal Commitment consists in selecting the least committed belief function in a set
of equally justified belief functions. This selection procedure does not always lead to a
unique solution in which case extra requirements are added. The principle formalizes the
idea that one should never give more support than justified to any subset of Ω. It satisfies
a form of skepticism, of a commitment, of conservatism in the allocation of our belief. In
its spirit, it is not far from what the probabilists try to achieve with the maximum entropy
principle.” [Philippe Smets]

3More details about this rule can be found in [6].
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b) About specialization [18]:

Suppose at time to one has the evidence m0(·) which gives us the value of an hypothesis
A as m0(A). When a new evidence m1(·) comes in at time t1 > t0, then m0(A) might
flow down to the subsets of A therefore towards a more specific information. The impact
of a new bba might result in a redistribution of the initial mass of A, m0(A), towards its
more specific subsets. Thus m1(·) is called a specialization of m0(·).

8.28 Other fusion rules

Yen’s rule is related to fuzzy set, while the p-boxes method to upper and lower probabilities
(neutrosophic probability is a generalization of upper and lower probability) - see Sandia Tech.
Rep.

8.29 Fusion rules based on T -norm and T -conorm

These rules proposed by Tchamova, Dezert and Smarandache in [40] started from the T -norm
and T -conorm respectively in fuzzy and neutrosophic logics, where the “and” logic operator ∧
corresponds in fusion to the conjunctive rule, while the “or” logic operator ∨ corresponds to the
disjunctive rule. While the logic operators deal with degrees of truth and degrees of falsehood,
the fusion rules deal with degrees of belief and degrees of disbelief of hypotheses.

A T-norm is a function Tn : [0, 1]2 → [0, 1], defined in fuzzy/neutrosophic set theory and
fuzzy/neutrosophic logic to represent the “intersection” of two fuzzy/neutrosophic sets and
the fuzzy/neutrosophic logical operator “and” respectively. Extended to the fusion theory the
T -norm will be a substitute for the conjunctive rule.

The T -norm satisfies the conditions:

a) Boundary Conditions: Tn(0, 0) = 0, Tn(x, 1) = x.

b) Commutativity: Tn(x, y) = Tn(y, x).

c) Monotonicity: If x ≤ u and y ≤ v, then Tn(x, y) ≤ Tn(u, v).

d) Associativity: Tn(Tn(x, y), z) = Tn(x, Tn(y, z)).

There are many functions which satisfy the T -norm conditions. We present below the most
known ones:

• The Algebraic Product T -norm: Tn−algebraic(x, y) = x · y

• The Bounded T -norm: Tn−bounded(x, y) = max{0, x+ y − 1}

• The Default (min) T -norm [21, 51]: Tn−min(x, y) = min{x, y}.

A T-conorm is a function Tc : [0, 1]2 → [0, 1], defined in fuzzy/neutrosophic set theory
and fuzzy/neutrosophic logic to represent the “union” of two fuzzy/neutrosophic sets and the
fuzzy/neutrosophic logical operator “or” respectively. Extended to the fusion theory the T -
conorm will be a substitute for the disjunctive rule.

The T -conorm satisfies the conditions:
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a) Boundary Conditions: Tc(1, 1) = 1, Tc(x, 0) = x.

b) Commutativity: Tc(x, y) = Tc(y, x).

c) Monotonicity: if x ≤ u and y ≤ v, then Tc(x, y) ≤ Tc(u, v).

d) Associativity: Tc(Tc(x, y), z) = Tc(x, Tc(y, z)).

There are many functions which satisfy the T -conorm conditions. We present below the most
known ones:

• The Algebraic Product T -conorm: Tc−algebraic(x, y) = x+ y − x · y

• The Bounded T -conorm: Tc−bounded(x, y) = min{1, x + y}

• The Default (max) T -conorm [21, 51]: Tc−max(x, y) = max{x, y}.

Then, the T -norm Fusion rules are defined as follows:

m∩12(A) =
∑

X,Y ∈SΘ

X∩Y=A

Tn(m1(X),m2(Y ))

and the T -conorm Fusion rules are defined as follows:

m∪12(A) =
∑

X,Y ∈SΘ

X∪Y=A

Tc(m1(X),m2(Y ))

The min T -norm rule yields results, very closed to Conjunctive Rule. It satisfies the principle
of neutrality of the vacuous bba, reflects the majority opinion, converges towards idempotence.
It is simpler to apply, but needs normalization.

”What is missed it is a strong justification of the way of presenting the fusion process. But
we think, the consideration between two sources of information as a vague relation, character-
ized with the particular way of association between focal elements, and corresponding degree
of association (interaction) between them is reasonable.” (Albena Tchamova)

”Min rule can be interpreted as an optimistic lower bound for combination of bba and the
below Max rule as a prudent/pessimistic upper bound.” (Jean Dezert)

The T -norm and T -conorm are commutative, associative, isotone, and have a neutral ele-
ment.

8.30 Improvements of fusion rules

Degree of Intersection

The degree of intersection measures the percentage of overlapping region of two sets X1, X2

with respect to the whole reunited regions of the sets using the cardinal of sets not the fuzzy
set point of view [27]:

d(X1 ∩X2) =
|X1 ∩X2|
|X1 ∪X2|

,
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where |X| means cardinal of the set X.

This definition of the degree of intersection is different from Zhang’s previous one. For the
minimum intersection/overlapping, i.e. when X1 ∩X2 = ∅, the degree of intersection is 0, while
for the maximum intersection/overlapping, i.e. when X1 = X2, the degree of intersection is 1.

Degree of Union

The degree of intersection measures the percentage of non-overlapping region of two sets X1,
X2 with respect to the whole reunited regions of the sets using the cardinal of sets not the fuzzy
set point of view [27]:

d(X1 ∪X2) =
|X1 ∪X2| − |X1 ∩X2|

|X1 ∪X2|
.

For the maximum non-overlapping, i.e. when X1 ∩X2 = ∅, the degree of union is 1, while
for the minimum non-overlapping, i.e. when X1 = X2, the degree of union is 0.

The sum of degrees of intersection and union is 1 since they complement each other.

Degree of Inclusion

The degree of intersection measures the percentage of the included region X1 with respect to
the includant region X2 [27]:

Let X1 ⊆ X2, then

d(X1 ⊆ X2) =
|X1|
|X2|

.

d(∅ ⊆ X2) = 0 because nothing is included in X2, while d(X2 ⊆ X2) = 1 because X2 is
fulfilled by inclusion. By definition d(∅ ⊆ ∅) = 1.

And we can generalize the above degree for n ≥ 2 sets.

Improvements of Credibility, Plausibility and Communality Functions

Thus the Bel(·), Pl(·) and Com(·) functions can incorporate in their formulas the above degrees
of inclusion and intersection respectively:

• Credibility function improved:

∀A ∈ SΘ \ ∅, one has Beld(A) =
∑

X∈SΘ

X⊆A

|X|
|A|m(X)

• Plausibility function improved:

∀A ∈ SΘ \ ∅, one has Pld(A) =
∑

X∈SΘ

X∩A 6=∅

|X ∩A|
|X ∪A|m(X)

• Communality function improved:

∀A ∈ SΘ \ ∅, one has Comd(A) =
∑

X∈ SΘ

A⊆X

|A|
|X| ·m(X)
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Improvements of quantitative fusion rules

• Disjunctive rule improved:

∀A ∈ SΘ \ ∅, one has m∪d(A) = k∪d ·
∑

X1,X2∈SΘ

X1∪X2=A

|X1 ∪X2| − |X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2),

where k∪d is a constant of renormalization.

• Dezert-Smarandache classical rule improved:

∀A ∈ SΘ, one has mDSmCd(A) = kDSmCd ·
∑

X1,X2∈SΘ

X1∩X2=A

|X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2),

where kDSmCd is a constant of renormalization. It is similar with the Zhang’s Center Com-
bination rule extended on the Boolean algebra (Θ,∪,∩, C) and using another definition
for the degree of intersection.

• Dezert-Smarandache hybrid rule improved:

∀A ∈ SΘ \ ∅ one has

mDSmHd(A) = kDSmHd

·
{

∑

X1,X2∈SΘ

X1∩X2=A

|X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2)

+
∑

X1,X2∈∅
(A=U)∨{U∈∅∧A=I}

m1(X1)m2(X2)

+
∑

X1,X2∈SΘ

X1∪X2=A
X1∩X2=∅

|X1 ∪X2| − |X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2)

}

where kDSmHd is a constant of renormalization.

• Smets’ rule improved:

mS(∅) = k12 = kSd ·
∑

X1,X2∈SΘ

X1∩X2=∅

|X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2),

and

∀A ∈ SΘ \ ∅, one has mS(A) = kSd ·
∑

X1,X2∈SΘ

X1∩X2=A

|X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2),

where kSd is a constant of renormalization.
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• Yager’s rule improved:

mY (∅) = 0,mY (I) = kY d · {m1(I)m2(I) +
∑

X1,X2∈SΘ

X1∩X2=∅

|X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2)}

and

∀A ∈ SΘ \ {∅, I}, one has mY d(A) = kY d ·
∑

X1,X2∈SΘ

X1∩X2=A

|X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2).

where I = total ignorance and kY d is a constant of renormalization.

• Dubois-Prade’s rule improved:
mDP (∅) = 0,

and

∀A ∈ SΘ \ ∅ one has

mDP (A) = kDPd

·





∑

X1,X2∈SΘ

X1∩X2=A

|X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2)

+
∑

X1,X2∈SΘ

X1∪X2=A
X1∩X2=∅

|X1 ∪X2| − |X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2)





,

where kDPd is a constant of renormalization.

8.31 Extension of bba on neutrosophic sets

- Let T , I, F ⊆ [0, 1]. An element x(T, I, F ) belongs to a neutrosophic set M as follows:
its membership is T , its nonmembership is F , and its indeterminacy is I.

- Define a neutrosophic basic belief assignment (nbba):

n(·) : SΘ → [0, 1]3, n(A) = (TA, IA, FA),

where TA = belief in A, FA = disbelief in A, IA = indeterminacy on A.

- Admissibility condition: For each A ∈ SΘ, there exist scalars tA ∈ TA, iA ∈ IA, fA ∈ FA
such that: ∑

A∈SΘ

(tA + iA + fA) = 1.

- When FA = IA = φ nbba coincides with bba.
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- Intuitionistic Fuzzy Set can not be applied since the sum of
components for a single set < 1.

- N -norms/conorms [42, 43] use nbba’s for information fusion.

- All fusion rules and functions can be extended on nbba’s.

N-norms

Nn :
(
[0, 1] × [0, 1] × [0, 1]

)2 → [0, 1] × [0, 1] × [0, 1]

Nn

((
x1, x2, x3

)
,
(
y1, y2, y3

))
=
(
NnT

(
x1, y1

)
, NnI

(
x2, y2

)
, NnF

(
x3, y3

))

- For each component, J ∈ {T, I, F}, Nn satisfies the conditions:

a) Boundary Conditions: NnJ(0, 0) = 0, NnJ(x, 1) = x.

b) Commutativity: NnJ(x, y) = NnJ(y, x).

c) Monotonicity: If x ≤ u and y ≤ v, then NnJ(x, y) ≤ NnJ(u, v).

d) Associativity: NnJ(NnJ(x, y), z) = NnJ(x,NnJ(y, z)).

Nn represents intersection in neutrosophic set theory, respectively the and operator in
neutrosophic logic.

- Most known ones:

• The Algebraic Product N -norm: Nn−algebraicJ(x, y) = x · y
• The Bounded N -Norm: Nn−boundedJ(x, y) = max{0, x + y − 1}
• The Default (min) N -norm: Nn−minJ(x, y) = min{x, y}.

N-conorms

Nc :
(
[0, 1] × [0, 1] × [0, 1]

)2 → [0, 1] × [0, 1] × [0, 1]

Nc

((
x1, x2, x3

)
,
(
y1, y2, y3

))
=
(
NcT

(
x1, y1

)
, NcI

(
x2, y2

)
, NcF

(
x3, y3

))

- For each component, J ∈ {T, I, F}, Nc satisfies the conditions:

a) Boundary Conditions: NcJ(1, 1) = 1, NcJ(x, 0) = x.

b) Commutativity: NcJ(x, y) = NcJ(y, x).

c) Monotonicity: if x ≤ u and y ≤ v, then NcJ(x, y) ≤ NcJ(u, v).

d) Associativity: NcJ(NcJ(x, y), z) = NcJ(x,NcJ(y, z)).

Nc represents union in neutrosophic set theory, respectively the or operator in neutro-
sophic logic.

- Most known ones:

• The Algebraic Product N -conorm: Nc−algebraicJ(x, y) = x+ y − x · y
• The Bounded N -conorm: Nc−boundedJ(x, y) = min{1, x+ y}
• The Default (max) N -conorm: Nc−maxJ(x, y) = max{x, y}.
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N-norm and N-conorm based fusion rules

Let n1(·) and n2(·) be nbba’s.

N -norm fusion rulesare defined as follows:

n∩12(A) =
∑

X,Y ∈S∧Θ
X∩Y=A

Nn(n1(X), n2(Y ))

N -conorm fusion rules are defined as follows:

n∪12(A) =
∑

X,Y ∈S∧Θ
X∪Y=A

Nc(n1(X), n2(Y ))

- they can replace the conjunctive respectively disjunctive rules (Smarandache 2004)

- need normalizations

Example of N-norm fusion rule

A first doctor’s belief about a patient’s disease A is 0.4, disbelief 0.2, while about the second
disease B his belief is 0.1 with disbelief 0.2 and not sure 0.1. Second doctor is more confident
in disease B with 0.6, his disbelief on A is 0.1 and 0.3 not sure on A.

Hence n1(A) = (0.4, 0, 0.2), n1(B) = (0.1, 0.1, 0.2), and n2(A) = (0, 0.3, 0.1), n2(B) =
(0.6, 0, 0) are nbba’s and frame of discernment {A,B}. Using the Algebraic Product N -norm
fusion rule we get:

n12(A) = (0, 0, 0.02), n12(B) = (0.06, 0, 0),

n12(A ∩B) = (0.24, 0, 0) + (0, 0.03, 0.02) = (0.24, 0.03, 0.02).

Transfer the conflicting mass n12(A∩B) to A and B proportionally to their mass sums (following
PCR3):

x1/(0.4 + 0) = y1/(0.1 + 0.6) = 0.24/1.1,

hence

x1 = 0.4(0.24/1.1) = 0.087273, y1 = 0.7(0.24/1.1) = 0.152727;

x2/0.3 = y2/0.1 = 0.03/0.4,

hence

x2 = 0.3(0.03/0.4) = 0.0225, y2 = 0.1(0.03/0.4) = 0.0075;

x3/0.3 = y3/0.2 = 0.02/0.5,

hence

x3 = 0.3(0.02/0.5) = 0.012, y3 = 0.2(0.02/0.5) = 0.008.
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Summing them with the previous one gets: n12tr(A) = (0.087273, 0.0225, 0.032), n12tr(B) =
(0.212727, 0.0075, 0.008) and renormalize (divide by their sum= 0.37):

n12tr-norm(A) = (0.235873, 0.060811, 0.086486),

n12tr-norm(B) = (0.574938, 0.02027, 0.021622).

Remark: If first done the normalization and second the transfer the result will be the same [20].

8.32 Unification of Fusion Rules (UFR)

If variable y is directly proportional with variable p, then y = k · p, where k is a constant. If
variable y is inversely proportional with variable q, then y = k · 1

q ; we can also say that y is

directly proportional with variable 1
q . In a general way, we say that y is directly proportional

with variables p1, p2, . . . , pm and inversely proportionally with variables q1, q2, . . . , qn, where
m,n ≥ 1, then:

y = k · p1 · p2 · . . . · pm
q1 · q2 · . . . · qn

= k · P
Q
,

where P =
∏m
i=1 pi and Q =

∏n
j=1 qj.

Then a Unification of Fusion Rules (UFR) is given by : mUFR(∅) = 0 and ∀A ∈ SΘ \ ∅ one
has

mUFR(A) =
∑

X1,X2 ∈ SΘ

X1 ? X2 = A

d(X1 ? X2)R(X1,X2)

+
P (A)

Q(A)
·

∑

X ∈ SΘ \ A
X ? A ∈ E

d(X ? A) · R(A,X)

P (A)/Q(A) + P (X)/Q(X)

where ? means intersection or union of sets (depending on the application or problem to be
solved);
d(X ? Y ) is the degree of intersection or union respectively;
R(X,Y ) is a T -norm/conorm (or N -norm/conorm in a more general case) fusion combina-
tion rule respectively (extension of conjunctive or disjunctive rules respectively to fuzzy or
neutrosophic operators) or any other fusion rule; the T -norm and N -norm correspond to the
intersection of sets, while the T -conorm and N -conorm to the disjunction of sets;
E is the ensemble of sets (in majority cases they are empty sets) whose masses must be trans-
ferred (in majority cases to non-empty sets, but there are exceptions for the open world);
P (A) is the product of all parameters directly proportional with A;
while Q(A) is the product of all parameters inversely proportional with A [in most of the cases
P (A) and Q(A) are derived from the masses assigned to the set A by the sources].
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8.33 Unification of Fusion Theories (UFT)

As a conclusion, since no theory neither rule fully satisfy all needed applications, the author
proposes [27–30] a Unification of (Quantitative) Fusion Theories extending the power and hyper-
power sets from previous theories to a Boolean algebra obtained by the closures of the frame of
discernment under union, intersection, and complement of sets (for non-exclusive elements one
considers a fuzzy or neutrosophic complement).

And, at each application, one selects the most appropriate model, rule, and algorithm of
implementation.

Since everything depends on the application/problem to solve, this scenario looks like a
logical chart designed by the programmer in order to write and implement a computer program,
or even like a cooking recipe.

Here it is the scenario attempting for a unification and reconciliation of the fusion theories
and rules:

1) If all sources of information are reliable, then apply the conjunctive rule, which means
consensus between them (or their common part):

2) If some sources are reliable and others are not, but we don’t know which ones are unreli-
able, apply the disjunctive rule as a cautious method (and no transfer or normalization is
needed).

3) If only one source of information is reliable, but we don’t know which one, then use the
exclusive disjunctive rule based on the fact that X1 Y X2 Y · · · Y Xn means either X1 is
reliable, or X2, or and so on, or Xn, but not two or more in the same time.

4) If a mixture of the previous three cases, in any possible way, use the mixed conjunctive-
disjunctive rule.

5) If we know the sources which are unreliable, we discount them. But if all sources are fully
unreliable (100%), then the fusion result becomes the vacuum bba (i.e. m(Θ) = 1, and
the problem is indeterminate. We need to get new sources which are reliable or at least
they are not fully unreliable.

6) If all sources are reliable, or the unreliable sources have been discounted (in the default
case), then use the DSm classic rule (which is commutative, associative, Markovian) on
Boolean algebra (Θ,∪,∩, C), no matter what contradictions (or model) the problem has.
I emphasize that the super-power set SΘ generated by this Boolean algebra contains
singletons, unions, intersections, and complements of sets.

7) If the sources are considered from a statistical point of view, use Murphy’s average rule
(and no transfer or normalization is needed).

8) In the case the model is not known (the default case), it is prudent/cautious to use the
free model (i.e. all intersections between the elements of the frame of discernment are
non-empty) and DSm classic rule on SΘ, and later if the model is found out (i.e. the
constraints of empty intersections become known), one can adjust the conflicting mass at
any time/moment using the DSm hybrid rule.
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9) Now suppose the model becomes known [i.e. we find out about the contradictions (=
empty intersections) or consensus (= non-empty intersections) of the problem/applica-
tion]. Then:

9.1) If an intersection A ∩ B is not empty, we keep the mass m(A ∩B) on A ∩B, which
means consensus (common part) between the two hypotheses A and B (i.e. both
hypotheses A and B are right) [here one gets DSmT].

9.2) If the intersection A ∩B = ∅ is empty, meaning contradiction, we do the following :

9.2.1) if one knows that between these two hypotheses A and B one is right and the
other is false, but we don’t know which one, then one transfers the mass m(A∩B)
to m(A ∪ B), since A ∪ B means at least one is right [here one gets Yager’s if
n = 2, or Dubois-Prade, or DSmT];

9.2.2) if one knows that between these two hypotheses A and B one is right and the
other is false, and we know which one is right, say hypothesis A is right and B
is false, then one transfers the whole mass m(A ∩ B) to hypothesis A (nothing
is transferred to B);

9.2.3) if we don’t know much about them, but one has an optimistic view on hypotheses
A and B, then one transfers the conflicting mass m(A ∩ B) to A and B (the
nearest specific sets in the Specificity Chains) [using Dempster’s, PCR2–5 ]

9.2.4) if we don’t know much about them, but one has a pessimistic view on hypotheses
A and B, then one transfers the conflicting mass m(A ∩ B) to A ∪ B (the
more pessimistic the further one gets in the Specificity Chains: (A ∩ B) ⊂ A ⊂
(A ∪ B) ⊂ I); this is also the default case [using DP’s, DSm hybrid rule,
Yager’s]; if one has a very pessimistic view on hypotheses A and B then one
transfers the conflicting mass m(A ∩B) to the total ignorance in a closed world
[ Yager’s, DSmT ], or to the empty set in an open world [ TBM];

9.2.5.1) if one considers that no hypothesis between A and B is right, then one transfers
the mass m(A∩B) to other non-empty sets (in the case more hypotheses do exist
in the frame of discernment) — different from A, B, A∪B — for the reason that:
if A and B are not right then there is a bigger chance that other hypotheses in
the frame of discernment have a higher subjective probability to occur; we do
this transfer in a closed world [DSm hybrid rule]; but, if it is an open world, we
can transfer the mass m(A ∩B) to the empty set leaving room for new possible
hypotheses [here one gets TBM];

9.2.5.2) if one considers that none of the hypotheses A, B is right and no other hypoth-
esis exists in the frame of discernment (i.e. n = 2 is the size of the frame of
discernment), then one considers the open world and one transfers the mass to
the empty set [here DSmT and TBM converge to each other].

Of course, this procedure is extended for any intersections of two or more sets: A∩B ∩C, etc.
and even for mixed sets: A ∪ (B ∪ C), etc.

If it is a dynamic fusion in a real time and associativity and/or Markovian process are
needed, use an algorithm which transforms a rule (which is based on the conjunctive rule and
the transfer of the conflicting mass) into an associative and Markovian rule by storing the pre-
vious result of the conjunctive rule and, depending of the rule, other data. Such rules are called
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quasi-associative and quasi-Markovian.

Some applications require the necessity of decaying the old sources because their information
is considered to be worn out.

If some bba is not normalized (i.e. the sum of its components is < 1 as in incomplete
information, or > 1 as in paraconsistent information) we can easily divide each component by
the sum of the components and normalize it. But also it is possible to fusion incomplete and
paraconsistent masses, and then normalize them after fusion. Or leave them unnormalized since
they are incomplete or paraconsistent.

PCR5 does the most mathematically exact (in the fusion literature) redistribution of the
conflicting mass to the elements involved in the conflict, redistribution which exactly follows
the tracks of the conjunctive rule.

Acknowledgement

We want to thank Dr. Wu Li from NASA Langley Research Center, Prof. Philippe Smets from
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