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Abstract: Dempster’s rule, non-normalized conjunctive rule, Yager’s rule and
Dubois-Prade’s rule for belief functions combination are generalized to be applicable
to hyper-power sets according to the DSm theory. A comparison of the rules with
DSm rule of combination is presented. A series of examples is included.

3.1 Introduction

Belief functions are one of the widely used formalisms for uncertainty representation and pro-
cessing. Belief functions enable representation of incomplete and uncertain knowledge, belief
updating and combination of evidence. Belief functions were originally introduced as a principal
notion of Dempster-Shafer Theory (DST) or the Mathematical Theory of Evidence [13].

For a combination of beliefs Dempster’s rule of combination is used in DST. Under strict
probabilistic assumptions, its results are correct and probabilistically interpretable for any cou-
ple of belief functions. Nevertheless these assumptions are rarely fulfilled in real applications. It
is not uncommon to find examples where the assumptions are not fulfilled and where results of
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Dempster’s rule are counter-intuitive, e.g. see [1, 2, 14], thus a rule with more intuitive results
is required in such situations.
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Hence, a series of modifications of Dempster’s rule were suggested and alternative approaches
were created. The classical ones are Dubois and Prade’s rule [9] and Yager’s rule of belief
combination [17]. Others include a wide class of weighted operators [12] and an analogous
idea proposed in [11], the Transferable Belief Model (TBM) using the so-called non-normalized
Dempster’s rule [16], disjunctive (or dual Dempster’s) rule of combination [4, 8], combination
’per elements’ with its special case — minC combination, see [3], and other combination rules.
It is also necessary to mention the method for application of Dempster’s rule in the case of
partially reliable input beliefs [10].

A brand new approach performs the Dezert-Smarandache (or Dempster-Shafer modified)
theory (DSmT) with its DSm rule of combination. There are two main differences: 1) mutual
exclusivity of elements of a frame of discernment is not assumed in general; mathematically it
means that belief functions are not defined on the power set of the frame, but on a so-called
hyper-power set, i.e., on the Dedekind lattice defined by the frame; 2) a new combination
mechanism which overcomes problems with conflict among the combined beliefs and which also
enables a dynamic fusion of beliefs.

As the classical Shafer’s frame of discernment may be considered the special case of a so-
called hybrid DSm model, the DSm rule of combination is compared with the classic rules of
combination in the publications about DSmT [7, 14].

Unfortunately, none of the classical combination rules has been formally generalized to
hyper-power sets, thus their comparison with the DSm rule is not fully objective until now.

This chapter brings a formal generalization of the classical Dempster’s, non-normalized con-
junctive, Dubois-Prade’s, and Yager’s rules to hyper-power sets. These generalizations perform
a solid theoretical background for a serious objective comparison of the DSm rule with the
classical combination rules.

The classic definitions of Dempster’s, Dubois-Prade’s, and Yager’s combination rules are
briefly recalled in Section 3.2, basic notions of DSmT and its state which is used in this text
(Dedekind lattice, hyper-power set, DSm models, and DSmC and DSmH rules of belief combi-
nation) are recalled in Section 3.3.

A generalization of Dempster’s rule both in normalized and non-normalized versions is pre-
sented in Section 3.4, and a generalization of Yager’s rule in Section 3.5. Both these classic
rules are straightforwardly generalized as their ideas work on hyper-power sets simply without
any problem.

More interesting and more complicated is the case of Dubois-Prade’s rule. The nature of
this rule is closer to DSm rule, but on the other hand the generalized Dubois-Prade’s rule is
not compatible with a dynamic fusion in general. It works only for a dynamic fusion without
non-existential constraints, whereas a further extension of the generalized rule is necessary in
the case of a dynamic fusion with non-existential constraints.

Section 3.7 presents a brief comparison of the rules. There is a series of examples included.
All the generalized combination rules are applied to belief functions from examples from the
DSmT book Vol. 1 [14]. Some open problems for a future research are mentioned in Section 3.8
and the concluding Section 3.9 closes the chapter.
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3.2 Classic definitions

All the classic definitions assume an exhaustive finite frame of discernment Θ = {θ1, ..., θn},
whose elements are mutually exclusive.

A basic belief assignment (bba) is a mappingm : P(Θ) −→ [0, 1], such that
∑

A⊆Θm(A) = 1,
the values of bba are called basic belief masses (bbm). The value m(A) is called the ba-
sic belief mass1 (bbm) of A. A belief function (BF) is a mapping Bel : P(Θ) −→ [0, 1],
bel(A) =

∑
∅6=X⊆Am(X), belief function Bel uniquely corresponds to bba m and vice-versa.

P(Θ) is often denoted also by 2Θ. A focal element is a subset X of the frame of discernment
Θ, such that m(X) > 0. If a focal element is a one-element subset of Θ, we are referring to a
singleton.

Let us start with the classic definition of Dempster’s rule. Dempster’s (conjunctive) rule of
combination ⊕ is given as (m1 ⊕m2)(A) =

∑
X,Y⊆Θ,X∩Y=AKm1(X)m2(Y ) for A 6= ∅, where

K = 1
1−κ , with κ =

∑
X,Y⊆Θ,X∩Y=∅m1(X)m2(Y ), and (m1 ⊕ m2)(∅) = 0, see [13]; putting

K = 1 and (m1⊕m2)(∅) = κ we obtain the non-normalized conjunctive rule of combination ∩©,
see e. g. [16].

Yager’s rule of combination Y©, see [17], is given as
(m1 Y©m2)(A) =

∑
X,Y⊆Θ,X∩Y=Am1(X)m2(Y ) for ∅ 6= A ⊂ Θ,

(m1 Y©m2)(Θ) = m1(Θ)m2(Θ) +
∑

X,Y⊆Θ,X∩Y=∅m1(X)m2(Y ),
and (m1 Y©m2)(∅) = 0;

Dubois-Prade’s rule of combination DP© is given as
(m1DP©m2)(A) =

∑
X,Y⊆Θ,X∩Y=Am1(X)m2(Y ) +

∑
X,Y⊆Θ,X∩Y=∅,X∪Y=Am1(X)m2(Y ) for ∅ 6=

A ⊆ Θ, and (m1DP©m2)(∅) = 0, see [9].

3.3 Introduction to the DSm theory

Because DSmT is a new theory which is in permanent dynamic evolution, we have to note that
this text is related to its state described by formulas and text presented in the basic publication
on DSmT — in the DSmT book Vol. 1 [14]. Rapid development of the theory is demonstrated
by appearing of the current second volume of the book. For new advances of DSmT see other
chapters of this volume.

3.3.1 Dedekind lattice, basic DSm notions

Dempster-Shafer modified Theory or Dezert-Smarandache Theory (DSmT) by J. Dezert and
F. Smarandache [7, 14] allows mutually overlapping elements of a frame of discernment. Thus,
a frame of discernment is a finite exhaustive set of elements Θ = {θ1, θ2, ..., θn}, but not nec-
essarily exclusive in DSmT. As an example, we can introduce a three-element set of colours
{Red,Green,Blue} from the DSmT homepage2. DSmT allows that an object can have 2 or 3

1m(∅) = 0 is often assumed in accordance with Shafer’s definition [13]. A classical counter example is Smets’
Transferable Belief Model (TBM) which admits positive m(∅) as it assumes m(∅) ≥ 0.

2www.gallup.unm.edu/∼smarandache/DSmT.htm
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colours at the same time: e.g. it can be both red and blue, or red and green and blue in the
same time, it corresponds to a composition of the colours from the 3 basic ones.

DSmT uses basic belief assignments and belief functions defined analogically to the classic
Dempster-Shafer theory (DST), but they are defined on a so-called hyper-power set or Dedekind
lattice instead of the classic power set of the frame of discernment. To be distinguished from
the classic definitions, they are called generalized basic belief assignments and generalized basic
belief functions.

The Dedekind lattice, more frequently called hyper-power set DΘ in DSmT, is defined as the
set of all composite propositions built from elements of Θ with union and intersection operators
∪ and ∩ such that ∅, θ1, θ2, ..., θn ∈ DΘ, and if A,B ∈ DΘ then also A∪B ∈ DΘ and A∩B ∈ DΘ,
no other elements belong to DΘ (θi ∩ θj 6= ∅ in general, θi ∩ θj = ∅ iff θi = ∅ or θj = ∅).

Thus the hyper-power set DΘ of Θ is closed to ∪ and ∩ and θi ∩ θj 6= ∅ in general. Whereas
the classic power set 2Θ of Θ is closed to ∪, ∩ and complement, and θi ∩ θj = ∅ for every i 6= j.

Examples of hyper-power sets. Let Θ = {θ1, θ2}, we have DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2},
i.e. |DΘ| = 5. Let Θ = {θ1, θ2, θ3} now, we have DΘ = {α0, α1, ...α18}, where α0 = ∅, α1 =
θ1 ∩ θ2 ∩ θ3, α2 = θ1 ∩ θ2, α3 = θ1 ∩ θ3, ..., α17 = θ2 ∪ θ3, α18 = θ1 ∪ θ2 ∪ θ3, i.e., |DΘ| = 19 for
|Θ| = 3.

A generalized basic belief assignment (gbba) m is a mapping m : DΘ −→ [0, 1], such that∑
A∈DΘ m(A) = 1 and m(∅) = 0. The quantity m(A) is called the generalized basic belief mass

(gbbm) of A. A generalized belief function (gBF) Bel is a mapping Bel : DΘ −→ [0, 1], such that
Bel(A) =

∑
X⊆A,X∈DΘ m(X), generalized belief function Bel uniquely corresponds to gbba m

and vice-versa.

3.3.2 DSm models

If we assume a Dedekind lattice (hyper-power set) according to the above definition without
any other assumptions, i.e., all elements of an exhaustive frame of discernment can mutually
overlap themselves, we refer to the free DSm model Mf (Θ), i.e., about the DSm model free of
constraints.

In general it is possible to add exclusivity or non-existential constraints into DSm models,
we speak about hybrid DSm models in such cases.

An exclusivity constraint θ1 ∩ θ2 M1
≡ ∅ says that elements θ1 and θ2 are mutually exclusive

in model M1, whereas both of them can overlap with θ3. If we assume exclusivity constraints

θ1 ∩ θ2 M2
≡ ∅, θ1 ∩ θ3 M2

≡ ∅, θ2 ∩ θ3 M2
≡ ∅, another exclusivity constraint directly follows

them: θ1 ∩ θ2 ∩ θ3 M2
≡ ∅. In this case all the elements of the 3-element frame of discernment

Θ = {θ1, θ2, θ3} are mutually exclusive as in the classic Dempster-Shafer theory, and we call
such hybrid DSm model as Shafer’s model M0(Θ).

A non-existential constraint θ3
M3
≡ ∅ brings additional information about a frame of dis-

cernment saying that θ3 is impossible; it forces all the gbbm’s of X ⊆ θ3 to be equal to zero
for any gbba in model M3. It represents a sure meta-information with respect to generalized
belief combination which is used in a dynamic fusion.

In a degenerated case of the degenerated DSm model M∅ (vacuous DSm model in [14]) we
always have m(∅) = 1, m(X) = 0 for X 6= ∅. It is the only case where m(∅) > 0 is allowed in
DSmT.
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The total ignorance on Θ is the union It = θ1 ∪ θ2 ∪ ... ∪ θn. ∅ = {∅M, ∅}, where ∅M is the
set of all elements of DΘ which are forced to be empty through the constraints of the modelM
and ∅ is the classical empty set3.

For a given DSm model we can define (in addition to [14]) ΘM = {θi|θi ∈ Θ, θi 6∈ ∅M},
ΘM

M≡ Θ, and IM =
⋃
θi∈ΘM θi, i.e. IM

M≡ It, IM = It ∩ΘM, IM∅ = ∅. DΘM is a hyper-power
set on the DSm frame of discernment ΘM, i.e., on Θ without elements which are excluded by
the constraints of model M. It holds ΘM = Θ, DΘM = DΘand IM = It for any DSm model
without non-existential constraint. Whereas reduced (or constrained) hyper-power set DΘ

M (or
DΘ(M)) from Chapter 4 in [14] arises from DΘ by identifying of all M-equivalent elements.
DΘ

M0 corresponds to classic power set 2Θ.

3.3.3 The DSm rules of combination

The classic DSm rule DSmC is defined on the free DSm models as it follows4:
mMf (Θ)(A) = (m1 #©m2)(A) =

∑
X,Y ∈DΘ,X∩Y=Am1(X)m2(Y ).

Since DΘ is closed under operators ∩ and ∪ and all the ∩s are non-empty, the classic DSm
rule guarantees that (m1 #©m2) is a proper generalized basic belief assignment. The rule is
commutative and associative. For n-ary version of the rule see [14].

When the free DSm model Mf (Θ) does not hold due to the nature of the problem under
consideration, which requires us to take into account some known integrity constraints, one has
to work with a proper hybrid DSm model M(Θ) 6= Mf (Θ). In such a case, the hybrid DSm
rule of combination DSmH based on the hybrid model M(Θ), Mf (Θ) 6=M(Θ) 6=M∅(Θ), for
k ≥ 2 independent sources of information is defined as: mM(Θ)(A) = (m1 #©m2 #©...#©mk)(A) =
φ(A)[S1(A) +S2(A) +S3(A)], where φ(A) is a characteristic non-emptiness function of a set A,
i. e. φ(A) = 1 if A /∈ ∅ and φ(A) = 0 otherwise. S1 ≡ mMf (Θ), S2(A), and S3(A) are defined
for two sources (for n-ary versions see [14]) as it follows:
S1(A) =

∑
X,Y ∈DΘ, X∩Y=Am1(X)m2(Y ),

S2(A) =
∑

X,Y ∈ ∅, [U=A]∨[(U∈ ∅)∧(A=It)]
m1(X)m2(Y ),

S3(A) =
∑

X,Y ∈DΘ, X∪Y=A, X∩Y ∈ ∅ m1(X)m2(Y ) with U = u(X) ∪ u(Y ), where u(X) is the
union of all singletons θi that compose X and Y ; all the sets A,X, Y are supposed to be in
some canonical form, e.g. CNF. Unfortunately no mention about the canonical form is included
in [14]. S1(A) corresponds to the classic DSm rule on the free DSm model Mf (Θ); S2(A)
represents the mass of all relatively and absolutely empty sets in both the input gbba’s, which
arises due to non-existential constraints and is transferred to the total or relative ignorance;
and S3(A) transfers the sum of masses of relatively and absolutely empty sets, which arise as
conflicts of the input gbba’s, to the non-empty union of input sets5.

On the degenerated DSm model M∅ it must be mM∅(∅) = 1 and mM∅(A) = 0 for A 6= ∅.
The hybrid DSm rule generalizes the classic DSm rule to be applicable to any DSm model.

The hybrid DSm rule is commutative but not associative. It is the reason the n-ary version

3
∅ should be ∅M extended with the classical empty set ∅, thus more correct should be the expression

∅ = ∅M ∪ {∅}.
4To distinguish the DSm rule from Dempster’s rule, we use #© instead of ⊕ for the DSm rule in this text.
5As a given DSm model M is used a final compression step must be applied, see Chapter 4 in [14], which

is part of Step 2 of the hybrid DSm combination mechanism and ”consists in gathering (summing) all masses
corresponding to same proposition because of the constraints of the model”. I.e., gbba’s of M-equivalent elements
ofDΘ are summed. Hence the final gbbam is computed asm(A) =

P

X≡A mM(Θ)(X); it is defined on the reduced
hyper-power set DΘ

M.
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of the rule should be used in practical applications. For the n-ary version of Si(A), see [14].
For easier comparison with generalizations of the classic rules of combination we suppose all
formulas in CNF, thus we can include the compression step into formulas Si(A) as it follows6:

S1(A) =
∑

X≡A, X∈DΘ mMf (Θ)(X) =
∑

X∩Y≡A, X,Y ∈DΘ m1(X)m2(Y ) for ∅ 6= A ∈ DΘ
M,

S2(A) =
∑

X,Y ∈ ∅M, [U≡A]∨[(U∈ ∅M)∧(A=IM)]m1(X)m2(Y ) for ∅ 6= A ∈ DΘ
M,

S3(A) =
∑

X,Y ∈DΘ, (X∪Y )≡A, X∩Y ∈ ∅M)m1(X)m2(Y ) for ∅ 6= A ∈ DΘ
M,

Si(A) = 0 for A = ∅, and for A 6∈ DΘ
M (where U is as it is above).

We can further rewrite the DSmH rule to the following equivalent form:

mM(Θ)(A) = (m1 #©m2)(A) =
∑

X,Y ∈DΘ,X∩Y≡Am1(X)m2(Y ) +∑
X,Y ∈ ∅M, [UM=A]∨[(U∈ ∅M)∧(A=IM)]m1(X)m2(Y ) +∑
X,Y ∈DΘ, X∪Y=A X∩Y ∈ ∅M m1(X)m2(Y ) for all ∅ 6= A ∈ DΘ

M,

mM(Θ)(∅) = 0 and mM(Θ)(A) = 0 for A ∈ (DΘ\DΘ
M).

3.4 A generalization of Dempster’s rule

Let us assume all elements X from DΘ to be in CNF in the rest of this contribution, unless
another form of X is explicitly specified. With X = Y we mean that the formulas X and Y have

the same CNF. With X ≡ Y (X
M≡ Y ) we mean that the formulas X and Y are equivalent in

DSm modelM, i.e. their DNFs are the same up to unions with some constrained conjunctions
of elements of Θ.

Let us also assume non-degenerated hybrid DSm models, i.e., ΘM 6= ∅, IM /∈ ∅M. Let
us denote ∅ = ∅M ∪ {∅}, i.e. set of set of all elements of DΘ which are forced to be empty
trough the constraints of DSm modelM extended with classic empty set ∅, hence we can write

X ∈ ∅M for all ∅ 6= X
M≡ ∅ or X ∈ ∅ for all X

M≡ ∅ including ∅.
The classic Dempster’s rule puts belief mass m1(X)m2(Y ) to X ∩ Y (the rule adds it to

(m1⊕m2)(X∩Y )) whenever it is non-empty, otherwise the mass is normalized. In the free DSm
model all the intersections of non-empty elements are always non-empty, thus no normalization
is necessary and Dempster’s rule generalized to the free DSm model Mf (Θ) coincides with
the classic DSm rule: (m1 ⊕ m2)(A) =

∑
X,Y ∈DΘ, X∩Y=Am1(X)m2(Y ) = (m1 #©m2)(A) =

mMf (Θ)(A). It follows the fact that the classic DSm rule (DSmC rule) is in fact the conjunctive
combination rule generalized to the free DSm model. Hence, Dempster’s rule generalized to the
free DSm model is defined for any couple of belief functions.

Empty intersections can appear in a general hybrid modelM due to the model’s constraints,
thus positive gbbm’s of constrained elements (i.e equivalent to empty set) can appear, hence

the normalization should be used to meet the DSm assumption m(X) = 0 for X
M≡ ∅. If we

sum together all the gbbm’s mMf (Θ)(X) which are assigned to constrained elements of the

6We can further simplify the formulas for DSmH rule by using a special canonical form related to the used
hybrid DSm model, e.g. CNFM(X) = XM ∈ DΘ

M such that CNF (X) ≡ XM. Thus all subexpressions ’≡ A’
can be replaced with ’= A’ in the definitions of Si(A) and ’Si(A) = 0 for A 6∈ DΘ

M’ can be removed from the
definition. Hence we obtain a similar form to that published in DSmT book Vol. 1:
S1(A) =

P

X∩Y =A, X,Y ∈DΘ m1(X)m2(Y ),
S2(A) =

P

X,Y ∈ ∅M, [U=A]∨[(U∈ ∅M)∧(A=IM)]m1(X)m2(Y ) ,

S3(A) =
P

X,Y ∈DΘ, X∪Y =A, X∩Y ∈ ∅M
m1(X)m2(Y ).

Hence all the necessary assumptions of the definitions of Si(A) have been formalized.
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hyper-power set (X ∈ Θ, X
M≡ ∅) and assign the resulting sum to m(∅) (or more precisely

to mM(∅)), we obtain the non-normalized generalized conjunctive rule of combination. If we
redistribute this sum of gbbm’s among non-constrained elements of DΘ using normalization as
it is used in the classic Dempster’s rule, we obtain the generalized Dempster’s rule which meets
DSm assumption m(∅) = 0.

3.4.1 The generalized non-normalized conjunctive rule

The generalized non-normalized conjunctive rule of combination ∩© is given as
(m1 ∩©m2)(A) =

∑
X,Y ∈DΘ,X∩Y≡Am1(X)m2(Y ) for ∅ 6= A ∈ DΘ

M,
(m1 ∩©m2)(∅) =

∑
X,Y ∈DΘ, X∩Y ∈ ∅m1(X)m2(Y ),

and (m1 ∩©m2)(A) = 0 for A 6∈ DΘ
M.

We can easily rewrite it as

(m1 ∩©m2)(A) =
∑

X,Y ∈DΘ,X∩Y≡A
m1(X)m2(Y )

for A ∈ DΘ
M (∅ including), (m1 ∩©m2)(A) = 0 for A 6∈ DΘ

M.

Similarly to the classic case of the non-normalized conjunctive rule, its generalized version is
defined for any couple of generalized belief functions. But we have to keep in mind that positive
gbbm of the classic empty set (m(∅) > 0) is not allowed in DSmT7.

3.4.2 The generalized Dempster’s rule

To eliminate positive gbbm’s of empty set we have to relocate or redistribute gbbm’smMf (Θ)(X)

for all X
M≡ ∅. The normalization of gbbm’s of non-constrained elements of DΘ is used in the

case of the Dempster’s rule.

The generalized Dempster’s rule of combination ⊕ is given as

(m1 ⊕m2)(A) =
∑

X,Y ∈DΘ,X∩Y≡A
Km1(X)m2(Y )

for ∅ 6= A ∈ DΘ
M, where K = 1

1−κ , κ =
∑

X,Y ∈DΘ,X∩Y ∈ ∅ m1(X)m2(Y ), and (m1 ⊕m2)(A) = 0

otherwise, i.e., for A = ∅ and for A /∈ DΘ
M.

Similarly to the classic case, the generalized Dempster’s rule is not defined in fully contra-
dictive cases8 in hybrid DSm models, i.e. whenever κ = 1. Specially the generalized Dempster’s
rule is not defined (and it cannot be defined) on the degenerated DSm model M∅.

To be easily comparable with the DSm rule, we can rewrite the definition of the generalized
Dempster’s rule to the following equivalent form: (m1⊕m2)(A) = φ(A)[S⊕

1 (A)+S⊕
2 (A)+S⊕

3 (A)],

7The examples, which compare DSmH rule with the classic combination rules in Chapter 1 of DSmT book
Vol. 1. [14], include also the non-normalized conjunctive rule (called Smets’ rule there). To be able to correctly
compare all that rules on the generalized level in Section 3.7 of this chapter, we present, here, also a generalization
of the non-normalized conjunctive rule, which does not respect the DSm assumption m(∅) = 0.

8Note that in a static combination it means a full conflict/contradiction between input BF’s. Whereas in
the case of a dynamic combination it could be also a full conflict between mutually non-conflicting or partially
conflicting input BF’s and constraints of a used hybrid DSm model. E.g. m1(θ1 ∪ θ2) = 1, m2(θ2 ∪ θ3) = 1,
where θ2 is constrained in a used hybrid model.
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where φ(A) is a characteristic non-emptiness function of a set A, i. e. φ(A) = 1 if A /∈ ∅ and
φ(A) = 0 otherwise, S⊕

1 (A), S⊕
2 (A), and S⊕

3 (A) are defined by

S⊕
1 (A) = S1(A) =

∑
X,Y ∈DΘ,X∩Y≡Am1(X)m2(Y ),

S⊕
2 (A) = S1(A)

P

Z∈DΘ Z /∈ ∅
S1(Z)

∑
X,Y ∈ ∅Mm1(X)m2(Y ),

S⊕
3 (A) = S1(A)

P

Z∈DΘ Z /∈ ∅
S1(Z)

∑
X,Y ∈DΘ, X∪Y /∈ ∅, X∩Y ∈ ∅M m1(X)m2(Y ).

For proofs see Appendix 3.11.1.

S⊕
1 (A) corresponds to a non-conflicting belief mass, S⊕

3 (A) includes all classic conflicting
masses and the cases where one of X,Y is excluded by a non-existential constraint, and S⊕

2 (A)
corresponds to the cases where both X and Y are excluded by (a) non-existential constraint(s).

It is easy verify that the generalized Dempster’s rule coincides with the classic one on Shafer’s
modelM0, see Appendix 3.11.1. Hence, the above definition of the generalized Dempster’s rule
is really a generalization of the classic Dempster’s rule. Similarly, we can notice that the rule
works also on the free DSm model Mf and its results coincide with those by DSmC rule. We
can define n-ary version of the generalized Dempster’s rule, analogically to n-ary versions of
DSm rules, but because of its associativity it is not necessary in the case of the Dempster’s rule.

3.5 A generalization of Yager’s rule

The classic Yager’s rule puts belief mass m1(X)m2(Y ) to X ∩ Y whenever it is non-empty,
otherwise the mass is added to m(Θ). As all the intersections are non-empty in the free DSm
model, nothing should be added to m1(Θ)m2(Θ) and Yager’s rule generalized to the free DSm
model Mf (Θ) also coincides with the classic DSm rule.

(m1 Y©m2)(A) =
∑

X,Y ∈DΘ,X∩Y=A

m1(X)m2(Y ) = (m1 #©m2)(A).

The generalized Yager’s rule of combination Y© for a general hybrid DSm model M is given as

(m1 Y©m2)(A) =
∑

X,Y ∈DΘ,X∩Y≡A
m1(X)m2(Y )

for A /∈ ∅, ΘM 6= A ∈ DΘ
M,

(m1 Y©m2)(ΘM) =
∑

X,Y ∈DΘ

X∩Y ≡ΘM

m1(X)m2(Y ) +
∑

X,Y ∈DΘ

X∩Y ∈ ∅M

m1(X)m2(Y )

and (m1 Y©m2)(A) = 0 otherwise, i.e. for A ∈ ∅ and for A ∈ (DΘ \DΘ
M).

It is obvious that the generalized Yager’s rule of combination is defined for any couple of
belief functions which are defined on hyper-power set DΘ.

To be easily comparable with the DSm rule, we can rewrite the definition of the generalized
Yager’s rule to an equivalent form: (m1 Y©m2)(A) = φ(A)[S Y©

1 (A) + S Y©
2 (A) + S Y©

3 (A)], where

S Y©
1 (A), S Y©

2 (A), and S Y©
3 (A) are defined by:

S
Y©
1 (A) = S1(A) =

∑

X,Y ∈DΘ, X∩Y≡A
m1(X)m2(Y )
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S
Y©
2 (ΘM) =

∑

X,Y ∈ ∅M

m1(X)m2(Y )

S
Y©
2 (A) = 0 forA 6= ΘM

S
Y©
3 (ΘM) =

∑

X,Y ∈DΘ,

X∪Y /∈ ∅,

X∩Y ∈ ∅M

m1(X)m2(Y )

S
Y©
3 (A) = 0 forA 6= ΘM.

For proofs see Appendix 3.11.2.

Analogically to the case of the generalized Dempster’s rule, S Y©
1 (A) corresponds to non-

conflicting belief mass, S Y©
3 (A) includes all classic conflicting masses and the cases where one

of X,Y is excluded by a non-existential constraint, and S Y©
2 (A) corresponds to the cases where

both X and Y are excluded by (a) non-existential constraint(s).
It is easy to verify that the generalized Yager’s rule coincides with the classic one on Shafer’s

modelM0. Hence the definition of the generalized Yager’s rule is really a generalization of the
classic Yager’s rule, see Appendix 3.11.2.

Analogically to the generalized Dempster’s rule, we can observe that the formulas for the
generalized Yager’s rule work also on the free DSm model and that their results really coincide
with those by DSmC rule. If we admit also the degenerated (vacuous) DSm model M∅, i.e.,
ΘM∅ = ∅, it is enough to modify conditions for (m1 Y©m2)(A) = 0, so that it holds for ΘM 6=
A ∈ ∅ and for A ∈ (DΘ \DΘ

M). Then the generalized Yager’s rule works also on M∅; and
because of the fact that there is the only bba m∅(∅) = 1, m∅(X) = 0 for any X 6= ∅ on M∅,
the generalized Yager’s rule coincides with the DSmH rule there.

3.6 A generalization of Dubois-Prade’s rule

The classic Dubois-Prade’s rule puts belief mass m1(X)m2(Y ) to X ∩ Y whenever it is non-
empty, otherwise the mass m1(X)m2(Y ) is added to X ∪ Y which is always non-empty in the
DST.

In the free DSm model all the intersections of non-empty elements are always non-empty,
thus nothing to be added to unions and Dubois-Prade’s rule generalized to the free model
Mf (Θ) also coincides with the classic DSm rule

(m1DP©m2)(A) =
∑

X,Y ∈DΘ,X∩Y=A

m1(X)m2(Y ) = (m1 #©m2)(A).

In the case of a static fusion, only exclusivity constraints are used, thus all the unions of
Xi ∈ DΘ, X /∈ ∅ are also out of ∅. Thus we can easily generalize Dubois-Prade’s rule as
(m1DP©m2)(A) =

∑
X,Y ∈DΘ,X∩Y≡Am1(X)m2(Y ) +

∑
X,Y ∈DΘ,X∩Y ∈∅M,X∪Y≡Am1(X)m2(Y ) for

∅ 6= A ∈ DΘ
M, and (m1DP©m2)(A) = 0 otherwise, i.e., for A = ∅ or A /∈ DΘ

M.

The situation is more complicated in the case of a dynamic fusion, where non-existential
constraints are used. There are several sub-cases how X ∩ Y ∈ ∅ arises.
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There is no problem if both X,Y are out of ∅, because their union X ∪ Y /∈ ∅. Similarly
if at the least one of X,Y is out of ∅ then their union is also out of ∅.

On the other hand if both X,Y are excluded by a non-existential constraint or if they
are subsets of elements of DΘ excluded by non-existential constraints then their union is also
excluded by the constraints and the idea of Dubois-Prade’s rule is not sufficient to solve this
case. Thus the generalized Dubois-Prade rule should be extended to cover also such cases.

Let us start with a simple solutions. As there is absolutely no reason to prefer any of non-
constrained elements of DΘ, the mass m1(X)m2(Y ) should be either normalized as in Demp-
ster’s rule or added to m(ΘM) as in Yager’s rule. Another option — division of m1(X)m2(Y ) to
k same parts — does not keep a nature of beliefs represented by input belief functions. Because
m1(X)m2(Y ) is always assigned to subsets of X,Y in the case of intersection or to supersets of
X,Y in the case of union, addition of m1(X)m2(Y ) to m(Θ) is closer to Dubois-Prade’s rule
nature as X,Y ⊂ Θ. Whereas the normalization assigns parts of m1(X)m2(Y ) also to sets
which can be disjoint with both of X,Y .

To find a more sophisticated solution, we have to turn our attention to the other cases, where
X∩Y,X∪Y ∈ ∅, and where a simple application of the idea of Dubois-Prade’s rule also does not
work. Let us assume a fixed hybrid DSm modelM(Θ) now. Let us further assume that neither
X nor Y is a part of a set of elements which are excluded with a non-existential constraint, i.e.,
X ∪ Y 6⊆ ⋃Zi where Zis are excluded by a non-existential constraint9. Let us transfer both X
and Y into disjunctive normal form (a union of intersections / a disjunction of conjunctions).
Thus, X ∪ Y is also in disjunctive form (DNF we obtain by simple elimination of repeating
conjuncts/intersections) and at the least one of the conjuncts, let say W = θ1w ∩ θ2w ∩ ...∩ θiw,
contains θjw non-equivalent to empty set in the given DSm model M(Θ). Thus it holds that
θ1w ∪ θ2w ∪ ...∪ θjw /∈ ∅. Hence we can assign belief masses to θ1w ∪ θ2w ∪ ...∪ θjw or to some of
its supersets. This idea fully corresponds to Dubois-Prade’s rule as the empty intersections are
substituted with unions. As we cannot prefer any of the conjuncts — we have to substitute ∩s
with ∪s in all conjuncts of the disjunctive normal form of X ∪ Y — we obtain a union UX∪Y
of elements of Θ. The union UX∪Y includes θjw; thus it is not equivalent to the empty set and
we can assign m1(X)m2(Y ) to UX∪Y ∩ IM /∈ ∅ 10.

Thus we can now formulate a definition of the generalized Dubois-Prade rule. We can distin-
guish three cases of input generalized belief functions: (i) all inputs satisfy all the constraints of
a hybrid DSm modelM(Θ) which is used (a static belief combination), (ii) inputs do not satisfy
the constraints of M(Θ) (a dynamic belief combination), but no non-existential constraint is
used, (iii) completely general inputs which do not satisfy the constraints, and non-existential
constraints are allowed (a more general dynamic combination). According to these three cases,
we can formulate three variants of the generalized Dubois-Prade rule.

9Hence X ∪ Y has had to be excluded by dynamically added exclusivity constraints, e.g. X = θ1 ∩ θ2, Y =
θ2 ∩ θ3 ∩ θ4 X ∪ Y = (θ1 ∩ θ2)∪ (θ2 ∩ θ3 ∩ θ4), and all θ1, θ2, θ3, θ4 are forced to be exclusive by added exclusivity
constraints, thus X ∩ Y,X ∪ Y ∈ ∅M.

10We obtain (θ1 ∪ θ2 ∪ θ3 ∪ θ4) ∩ IM in the example from the previous footnote.
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The simple generalized Dubois-Prade rule of combination DP© is given as11

(m1DP©m2)(A) =
∑

X∩Y≡A
m1(X) m2(Y ) +

∑

X∩Y ∈∅M
X∪Y ≡A

m1(X) m2(Y )

for ∅ 6= A ∈ DΘ
M, and (m1DP©m2)(A) = 0 otherwise, i.e., for A = ∅ and for A ∈ (DΘ \DΘ

M).

The generalized Dubois-Prade rule of combination DP© is given as

(m1DP©m2)(A) =
∑

X∩Y≡A
m1(X)m2(Y ) +

∑

X∩Y ∈∅M
X∪Y ≡A

m1(X)m2(Y ) +
∑

X∪Y ∈∅M
UX∪Y ≡A

m1(X)m2(Y )

for ∅ 6= A ∈ DΘ
M, and

(m1DP©m2)(A) = 0 otherwise, i.e., for A = ∅ and for A ∈ (DΘ \DΘ
M),

where UX∪Y is disjunctive normal form of X ∪ Y with all ∩s substituted with ∪s.

The extended generalized Dubois-Prade rule of combination DP© is given as

(m1DP©m2)(A) =
∑

X∩Y≡A
m1(X) m2(Y ) +

∑

X∩Y ∈∅M
X∪Y ≡A

m1(X) m2(Y )

+
∑

X∪Y ∈∅M
UX∪Y ≡A

m1(X) m2(Y )

for ∅ 6= A 6= ΘM, A ∈ DΘ
M,

(m1DP©m2)(ΘM) =
∑

X∩Y≡ΘM

m1(X) m2(Y ) +
∑

X∩Y ∈ ∅M
X∪Y ≡ΘM

m1(X) m2(Y )

+
∑

X∪Y ∈ ∅M
UX∪Y ≡ΘM

m1(X) m2(Y ) +
∑

UX∪Y ∈ ∅M

m1(X) m2(Y ),

and

(m1DP©m2)(A) = 0

otherwise, i.e., for A ∈ ∅ and for A ∈ (DΘ \DΘ
M),

where UX∪Y is disjunctive normal form of X ∪ Y with all ∩s substituted with ∪s.

In the case (i) there are positive belief masses assigned only to the Xi ∈ DΘ such that
X /∈ ∅, hence the simple generalized Dubois-Prade rule, which ignores all the belief masses
assigned to Y ∈ ∅, may be used. The rule is defined for any couple of BF’s which satisfy the
constraints.

11 We present here 3 variants of the generalized Dubois-Prade rule, formulas for all of them include several
summations over X,Y ∈ DΘ, where X,Y are more specified with other conditions. To simplify the formulas in
order to increase their readability, we do not repeat the common condition X,Y ∈ DΘ in sums in all the following
formulas for the generalized Dubois-Prade rule.
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In the case (ii) there are no UX∪Y ∈ ∅, hence the generalized Dubois-Prade rule, which
ignores multiples of belief masses m1(X)m2(Y ), where UX∪Y ∈ ∅, may be used.

In the case (iii) the extended generalized Dubois-Prade rule must be used, this rule can
handle all the belief masses in any DSm model, see 1a) in Appendix 3.11.3.

It is easy to verify that the generalized Dubois-Prade rule coincides with the classic one in
Shafer’s model M0, see 2) in Appendix 3.11.3.

The classic Dubois-Prade rule is not associative, neither the generalized one is. Similarly to
the DSm approach we can easily rewrite the definitions of the (generalized) Dubois-Prade rule
for a combination of k sources.

Analogically to the generalized Yager’s rule, the formulas for the generalized Dubois-Prade’s
rule work also on the free DSm modelMf and their results coincide with those of DSmC rules
there, see 1b) in Appendix 3.11.3. If we admit also the degenerated (vacuous) DSm modelM∅,
i.e., ΘM∅ = ∅, it is enough again to modify conditions for (m1DP©m2)(A) = 0, so that it holds
for ΘM 6= A ∈ ∅ and for A ∈ (DΘ \DΘ

M). Then the extended generalized Dubois-Prade’s rule
works also on M∅ and it trivially coincides with DSmH rule there.

To be easily comparable with the DSm rule, we can rewrite the definitions of the generalized
Dubois-Prade rules to an equivalent form similar to that of DSm:

the generalized Dubois-Prade rule:

(m1DP©m2)(A) = φ(A)[S
DP©
1 (A) + S

DP©
2 (A) + S

DP©
3 (A)]

where

S
DP©
1 (A) = S1(A) =

∑

X,Y ∈DΘ,X∩Y≡A
m1(X)m2(Y ),

S
DP©
2 (A)=

∑

X,Y ∈∅M, UX∪Y ≡A
m1(X)m2(Y ),

S
DP©
3 (A)=

∑

X,Y ∈DΘ,X∩Y ∈∅M, (X∪Y )≡A
m1(X)m2(Y ).

the simple generalized Dubois-Prade rule:

(m1DP©m2)(A) = φ(A)[S
DP©
1 (A) + S

DP©
3 (A)]

where SDP©
1 (A), SDP©

3 (A) as above;

the extended generalized Dubois-Prade rule:

(m1DP©m2)(A) = φ(A)[S
DP©
1 (A) + S

DP©
2 (A) + S

DP©
3 (A)]

where SDP©
1 (A), SDP©

3 (A) as above, and

S
DP©
2 (A) =

∑

X,Y ∈∅M, [UX∪Y ≡A]∨[UX∪Y ∈∅∧A=ΘM]

m1(X)m2(Y ).

For a proof of equivalence see 3) in Appendix 3.11.3.
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Functions SDP©
1 , SDP©

2 , SDP©
3 have interpretations analogical to S⊕

i and S Y©
i for ⊕ and Y©. SDP©

2 is
principal for distinguishing of the variants of the Dubois-Prade rule. In the case (i) no positive

belief masses are assigned to X ∈ ∅ thus SDP©
2 (A) ≡ 0, in the case (ii) SDP©

2 (A) sums m1(X)m2(Y )
only for UX∪Y ≡ A, whereas in the case (iii) also UX∪Y ∈ ∅M must be included.

In general, some θis can repeat several times in UX∪Y , they are eliminated in DNF. Hence we
obtain a union of elements of Θ which are contained in X,Y . Let us note that this union UX∪Y
of elements of Θ coincides with U = u(X) ∪ u(Y ), more precisely UX∪Y ∩ IM coincides with
U ∩ IM = u(X)∪u(Y )∩ IM. Thus the generalized Dubois-Prade rule gives the same results as
the hybrid DSmH rule does. Let us further note that the extension of Dubois-Prade’s rule, i.e.
addition of m1(X)m2(Y ) to m(ΘM) for X,Y ∈ ∅M also coincides with the computation with
the DSmH rule in the case, where U ∈ ∅M. Hence, the extended generalized Dubois-Prade
rule is fully equivalent to the DSmH rule.

3.7 A comparison of the rules

As there are no conflicts in the free DSm model Mf (Θ) all the presented rules coincide in the
free DSm model Mf (Θ). Thus the following statement holds:

Statement 1. Dempster’s rule, the non-normalized conjunctive rule, Yager’s rule, Dubois-
Prade’s rule, the hybrid DSmH rule, and the classic DSmC rule are all mutually equivalent in
the free DSm model Mf (Θ).

Similarly the classic Dubois-Prade rule is equivalent to the DSm rule for Shafer’s model. But
in general all the generalized rules ⊕, Y©,DP©, and DSm rule are different. A very slight difference
comes in the case of Dubois-Prade’s rule and the DSm rule. A difference appears only in the
case of a dynamic fusion where some belief masses of both (of all in an n-ary case) source
generalized basic belief assignments are equivalent to the empty set (i.e. m1(X),m2(Y ) ∈ ∅M
or mi(Xi) ∈ ∅M). The generalized Dubois-Prade rule is not defined and it must be extended
by adding m1(X)m2(Y ) or Πi mi(Xi) to m(ΘM) in this case. The generalized Dubois-Prade
rule coincides with the DSm rule in all other situations, i.e., whenever all input beliefs fit the
DSm model, which is used, and whenever we work with a DSm model without non-existential
constraints, see the previous section. We can summarize it as it follows:

Statement 2. (i) If a hybrid DSm modelM(Θ) does not include any non-existential constraint
or if all the input belief functions satisfy all the constraints ofM(Θ), then the generalized Dubois-
Prade rule is equivalent to the DSm rule in the modelM(Θ). (ii) The generalized Dubois-Prade
rule extended with addition of m1(X)m2(Y ) (or Πi mi(Xi) in an n-ary case) to m(ΘM) for
X,Y ∈ ∅M (or for Xi ∈ ∅M in an n-ary case) is fully equivalent to the hybrid DSmH rule on
any hybrid DSm model.

3.7.1 Examples

Let us present examples from Chapter 1 from DSm book 1 [14] for an illustration of the com-
parison of the generalized rules with the hybrid DSm rule.

Example 1. The first example is defined on Θ = {θ1, θ2, θ3} as Shafer’s DSm model M0 with
the additional constraint θ3 ≡ ∅, i.e. θ1 ∩ θ2 ≡ θ3 ≡ ∅ in DSm model M1, and subsequently
X ≡ Y ≡ ∅ for all X ⊆ θ1 ∩ θ2 Y ⊆ θ3. We assume two independent source belief assignments
m1,m2, see Table 3.1.
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Mf
DSmC M1 DSmH ⊕ ∩© Y© DP©

DΘ m1 m2 mDSmC DΘ
M1

mDSmH m⊕ m ∩© m Y© mDP©

θ1 ∩ θ2 ∩ θ3 0 0 0 ∅
θ1 ∩ θ2 0 0 0.21 ∅
θ1 ∩ θ3 0 0 0.13 ∅
θ2 ∩ θ3 0 0 0.14 ∅

θ1 ∩ (θ2 ∪ θ3) 0 0 0 ∅
θ2 ∩ (θ1 ∪ θ3) 0 0 0 ∅
θ3 ∩ (θ1 ∪ θ2) 0 0 0.11 ∅

2 0 0 0 ∅
θ1 0.10 0.50 0.21 θ1 0.34 0.600 0.21 0.21 0.34

θ2 0.40 0.10 0.11 θ2 0.25 0.314 0.11 0.11 0.25

θ3 0.20 0.30 0.06 ∅
2θ1 0 0 0 θ1 0 0 0 0 0

2θ2 0 0 0 θ2 0 0 0 0 0

2θ3 0 0 0 ∅
θ1 ∪ θ2 0.30 0.10 0.03 θ1 ∪ θ2 0.41 0.086 0.03 0.68 0.41

θ1 ∪ θ3 0 0 0 θ1 0 0 0 0 0

θ2 ∪ θ3 0 0 0 θ2 0 0 0 0 0

θ1 ∪ θ2 ∪ θ3 0 0 0 θ1 ∪ θ2 0 0 0 0 0

∅ ∅ 0.65

Table 3.1: Example 1 — combination of gbba’s m1,m2 with the DSm rules DSmC, DSmH, and
with the generalized rules ⊕, ∩©, Y©, DP© on hybrid DSm model M1.

A description of Table 3.1. As DSm theory admits general source basic belief assignments
defined on the free DSm modelMf , all elements of DΘ are presented in the first column of the
table. We use the following abbreviations for 4 elements of DΘ: 2 for (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪
(θ2 ∩ θ3) = (θ1 ∪ θ2) ∩ (θ1 ∪ θ3) ∩ (θ2 ∪ θ3), 2θ1 for θ1 ∪ (θ2 ∩ θ3) = (θ1 ∪ θ2) ∩ (θ1 ∪ θ3), 2θ2 for
θ2 ∪ (θ1 ∩ θ3), and 2θ3 for θ3 ∪ (θ1 ∩ θ2). Thus 2 is not any operator here, but just a symbol for
abbreviation; it has its origin in the papers about minC combination [3, 5, 6], see also Chapter
10 in DSm book Vol. 1 [14].

Source gbba’s m1,m2 follow in the second and the third column. The central part of the
table contains results of DSm combination of the beliefs: the result obtained with DSmC rule,
i.e. resulting gbba mDSmC , is in the 4th column and the result obtained with DSmH is in the
6th column. Column 5 shows equivalence of elements of the free DSm model Mf to those of
the assumed hybrid DSm model M1. Finally, the right part of the table displays the results of
combination of the source gbba’s with the generalized combination rules (with the generalized
Dempster’s rule ⊕ in the 7-th column, with the generalized non-normalized Dempster’s rule ∩©
in column 8, etc.). The resulting values are always cumulated, thus the value for m(θ1) is only
in the row corresponding to θ1, whereas all the other rows corresponding to sets equivalent to
θ1 contain 0s. Similarly, all the fields corresponding to empty set are blank with the exception
that for m ∩©(∅), i.e. the only one where positive m(∅) is allowed. The same structure of the
table is used also in the following examples.
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Example 2. Le us assume, now, two independent sources m1,m2 over 4-element frame Θ =
{θ1, θ2, θ3, θ4}, where Shafer’s model M0 holds, see Table 3.2.

Mf
DSmC M0

DSmH ⊕ ∩© Y© DP©

DΘ m1 m2 mDSmC DΘ
M0 mDSmH m⊕ m ∩© m Y© mDP©

θ1 ∩ θ2 0 0 0.9604 ∅
θ1 ∩ θ4 0 0 0.0196 ∅
θ2 ∩ θ3 0 0 0.0098 ∅
θ2 ∩ θ4 0 0 0.0098 ∅
θ3 ∩ θ4 0 0 0.0002 ∅
θ1 0.98 0 0 θ1 0 0 0 0 0

θ2 0 0.98 0 θ2 0 0 0 0 0

θ3 0.01 0 0 θ3 0 0 0 0 0

θ4 0.01 0.02 0.0002 θ4 0.0002 1 0.0002 0.0002 0.0002

θ1 ∪ θ2 0 0 0 θ1 ∪ θ2 0.9604 0 0 0 0.9604

θ1 ∪ θ4 0 0 0 θ1 ∪ θ4 0.0196 0 0 0 0.0196

θ2 ∪ θ3 0 0 0 θ2 ∪ θ3 0.0098 0 0 0 0.0098

θ2 ∪ θ4 0 0 0 θ2 ∪ θ4 0.0098 0 0 0 0.0098

θ3 ∪ θ4 0 0 0 θ3 ∪ θ4 0.0002 0 0 0 0.0002

θ1 ∪ θ2 ∪ θ3 ∪ θ4 0 0 0 θ1 ∪ θ2 ∪ θ3 ∪ θ4 0 0 0 0.9998 0

∅ ∅ 0.9998

Table 3.2: Example 2 — combination of gbba’s m1,m2 with the DSm rules DSmC, DSmH, and
with the generalized rules ⊕, ∩©, Y©, DP© on Shafer’s DSm model M0 (rows which contain only
0s and blank fields are dropped).

The structure of Table 3.2 is the same as in the case of Table 3.1. Because of the size of the
full table for DSm combination on a 4-element frame of discernment, rows which contain only
0s and blank fields are dropped.

Note, that input values are shortened by one digit here (i.e. 0.98, 0.02, and 0.01 instead of
0.998, 0.002, and 0.001) in comparison with the original version of the example in [14]. Never-
theless the structure and features of both the versions of the example are just the same.

Example 3. This is an example for Smet’s case, for the non-normalized Dempster’s rule. We
assume Shafer’s modelM0 on a simple 2-element frame Θ = {θ1, θ2}. We assume m(∅) ≥ 0, in
this example, even if it is not usual in DSm theory, see Table 3.3.

Example 4. Let us assume Shafer’s modelM0 on Θ = {θ1, θ2, θ3, θ4} in this example, see Table
3.4.

Example 5. Let us assume again Shafer’s modelM0 on a simple 2-element frame Θ = {θ1, θ2},
see Table 3.5.
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Mf
DSmC M0

DSmH ⊕ ∩© Y© DP©

DΘ m1 m2 mDSmC DΘ
M0 mDSmH m⊕ m ∩© m Y© mDP©

θ1 ∩ θ2 0 0 0.28 ∅
θ1 0.40 0.60 0.24 θ1 0.48 0.143 0.24 0.24 0.48

θ2 0.40 0.10 0.04 θ2 0.18 0.857 0.04 0.04 0.18

θ1 ∪ θ2 0 0 0 θ1 ∪ θ2 0.34 0 0 0.72 0.34

∅ 0.20 0.30 0.44 ∅ 0.72

Table 3.3: Example 3 — combination of gbba’s m1,m2 with the DSm rules DSmC, DSmH, and
with the generalized rules ⊕, ∩©, Y©, DP© on Shafer’s DSm model M0.

Mf
DSmC M0

DSmH ⊕ ∩© Y© DP©

DΘ m1 m2 mDSmC DΘ
M0 mDSmH m⊕ m ∩© m Y© mDP©

θ1 ∩ θ2 0 0 0.9702 ∅
θ1 ∩ (θ3 ∪ θ4) 0 0 0.0198 ∅
θ2 ∩ (θ3 ∪ θ4) 0 0 0.0098 ∅

θ1 0.99 0 0 θ1 0 0 0 0 0

θ2 0 0.98 0 θ2 0 0 0 0 0

θ1 ∪ θ2 0 0 0 θ1 ∪ θ2 0.9702 0 0 0 0.9702

θ3 ∪ θ4 0.01 0.02 0.0002 θ3 ∪ θ4 0.0002 1 0.0002 0.0002 0.0002

θ1 ∪ θ3 ∪ θ4 0 0 0 θ1 ∪ θ3 ∪ θ4 0.0198 0 0 0 0.0198

θ2 ∪ θ3 ∪ θ4 0 0 0 θ2 ∪ θ3 ∪ θ4 0.0098 0 0 0 0.0098

θ1 ∪ θ2 ∪ θ3 ∪ θ4 0 0 0 θ1 ∪ θ2 ∪ θ3 ∪ θ4 0 0 0 0.9998 0

∅ ∅ 0.9998

Table 3.4: Example 4 — combination of gbba’s m1,m2 with the DSm rules DSmC, DSmH, and
with the generalized rules ⊕, ∩©, Y©, DP© on Shafer’s DSm model M0 (rows which contain only
0s and blank fields are dropped).

M0 (rows which contain only 0s and blank fields are dropped).

Mf
DSmC M0

DSmH ⊕ ∩© Y© DP©

DΘ m1 m2 mDSmC DΘ
M0 mDSmH m⊕ m ∩© m Y© mDP©

θ1 ∩ θ2 0.40 0.30 0.89 ∅
θ1 0.50 0.10 0.05 θ1 0.24 0.45 0.05 0.05 0.24

θ2 0.10 0.60 0.06 θ2 0.33 0.54 0.06 0.06 0.33

θ1 ∪ θ2 0 0 0 θ1 ∪ θ2 0.43 0 0 0.89 0.43

∅ ∅ 0.89

Table 3.5: Example 5 — combination of gbba’s m1,m2 with the DSm rules DSmC, DSmH, and
with the generalized rules ⊕, ∩©, Y©, DP© on Shafer’s DSm model M0.
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Example 6. As all the above examples are quite simple, usually somehow related to Shafer’s
model, we present also one of the more general examples (Example 3) from Chapter 4 DSm
book Vol. 1; it is defined on the DSm model M4.3 based on 3-element frame Θ = {θ1, θ2, θ3}
with constraints θ1 ∩ θ2 ≡ θ2 ∩ θ3 ≡ ∅; and subsequently θ1 ∩ θ2 ∩ θ3 ≡ θ2 ∩ (θ1 ∪ θ3) ≡ ∅, see
Table 3.6.

Mf
DSmC M4.3 DSmH ⊕ ∩© Y© DP©

DΘ m1 m2 mDSmC DΘ
M4.3

mDSmH m⊕ m ∩© m Y© mDP©

θ1 ∩ θ2 ∩ θ3 0 0 0.16 ∅
θ1 ∩ θ2 0.10 0.20 0.22 ∅
θ1 ∩ θ3 0.10 0 0.12 θ1 ∩ θ3 0.17 0.342 0.12 0.12 0.17

θ2 ∩ θ3 0 0.20 0.19 ∅
θ1 ∩ (θ2 ∪ θ3) 0 0 0 θ1 ∩ θ3 0 0 0 0 0

θ2 ∩ (θ1 ∪ θ3) 0 0 0.05 ∅
θ3 ∩ (θ1 ∪ θ2) 0 0 0.01 θ1 ∩ θ3 0 0 0.01 0.01 0

2 0 0 0 θ1 ∩ θ3 0 0 0 0 0

θ1 0.10 0.20 0.08 θ1 0.16 0.263 0.08 0.08 0.16

θ2 0.20 0.10 0.03 θ2 0.12 0.079 0.03 0.03 0.12

θ3 0.30 0.10 0.10 θ3 0.23 0.263 0.10 0.10 0.23

2θ1 0 0 0.02 θ1 0 0 0.02 0.02 0

2θ2 0 0 0 2θ2 0.01 0 0 0 0.01

2θ3 0 0 0 θ3 0 0 0 0 0

θ1 ∪ θ2 0.10 0 0 θ1 ∪ θ2 0.11 0 0 0 0.11

θ1 ∪ θ3 0.10 0.20 0.02 θ1 ∪ θ3 0.08 0.053 0.02 0.02 0.08

θ2 ∪ θ3 0 0 0 θ2 ∪ θ3 0.05 0 0 0 0.05

θ1 ∪ θ2 ∪ θ3 0 0 0 θ1 ∪ θ2 ∪ θ3 0.07 0 0 0.62 0.07

∅ ∅ 0.62

Table 3.6: Example 6 — combination of gbba’s m1,m2 with the DSm rules DSmC, DSmH, and
with the generalized rules ⊕, ∩©, Y©, DP© on hybrid DSm model M4.3.

3.7.2 A summary of the examples

We can mention that all the rules are defined for all the presented source generalized basic
belief assignments. In the case of the generalized Dempster’s rule it is based on the fact that no
couple of source gbba’s is in full contradiction. In the case of the generalized Dubois-Prade’s
rule we need its extended version in Examples 1, 3, 5, and 6.

In Example 1, it is caused by constraint θ3 ≡ ∅ and positive values m1(θ3) = 0.20 and
m2(θ3) = 0.30, see Table 3.1, hence we have m1(θ3)m2(θ3) = 0.06 > 0 and θ3 ∩ θ3 = θ3 ∪ θ3 =
θ3 ≡ ∅ in DSm modelM1 in question. In Example 3, it is caused by admission of positive input
values for ∅: m1(∅) = 0.20, m2(∅) = 0.30. In Example 5, it is because both m1 and m2 have
positive input values for θ1 ∩ θ2 which is constrained. We have m1(θ1 ∩ θ2)m2(θ1 ∩ θ2) = 0.12
and (θ1 ∩ θ2) ∩ (θ1 ∩ θ2) = θ1 ∩ θ2 ≡ ∅ ≡ (θ1 ∩ θ2) ∪ (θ1 ∩ θ2), hence 0.12 should be added to
Θ by the extended Dubois-Prade’s rule. We have to distinguish this case from different cases
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such as e.g. m1(θ1)m2(θ2) or m1(θ1∩θ2)m2(θ2), where values are normally assigned to union of
arguments (θ1)∪ (θ2) or (θ1 ∩ θ2)∪ θ2 = θ2 respectively. In Example 6, it is analogically caused
by couples of positive inputs m1(θ1 ∩ θ2), m2(θ1 ∩ θ2) and m1(θ1 ∩ θ2), m2(θ2 ∩ θ3).

In Examples 2 and 4, the generalized Dubois-Prade’s rule without extension can be used
because all the elements of DΘ which are constrained (prohibited by the constraints) have 0
values of gbbm’s.

We can observe that, m(∅) > 0 only when using the generalized conjunctive rule ∩©, where
m ∩©(∅) =

∑
Z≡∅m(Z) and m ∩©(X) = mDSmC(X) for X 6≡ ∅. If we distribute m ∩©(∅) with

normalization, we obtain the result m⊕ of the generalized Dempster’s rule ⊕; if we relocate
(add) m ∩©(∅) to m ∩©(Θ) we obtain m Y©, i.e. the result of the generalized Yager’s rule.

The other exception of m(∅) > 0 is in Example 3, where mDSmC(∅) = 0.44 > 0 because
there is m1(∅) > 0 and m2(∅) > 0 what is usually not allowed in DSmT. This example was
included into [14] for comparison of DSmH with the classic non-normalized conjunctive rule
used in TBM.

In accordance with theoretical results we can verify, that the DSmH rule always gives the
same resulting values as the generalized Dubois-Prade rule produces in all 6 examples.

Looking at the tables we can observe, that DSmH and Dubois-Prade’s generate more speci-
fied results (i.e. higher gbbm’s are assigned to smaller elements of DΘ) than both the generalized
non-normalized conjunctive rule ∩© and the generalized Yager’s rule Y© produce. There is some
lost of information when the generalized ⊕ or Y© are applied. Nevertheless, there is some lost of
information also within the application of the DSmH rule. Considering the rules investigated
and compared in this text we obtain the most specific results when the generalized Dempster’s
rule ⊕ is used. Another rules, which produce more specified results than the DSmH rule and
the generalized Dubois-Prade’s rule do, are the generalized minC combination rule [5] and PCR
combination rules [15], which are out of scope of this chapter.

3.8 Open problems

As an open question remains commutativity of a transformation of generalized belief functions
to those which satisfy all the constraints of a used hybrid DSm model with the particular
combination rules. Such a commutation may significantly simplify functions S2 and hence the
entire definitions of the corresponding combination rules. If such a commutation holds for some
combination rule, we can simply transform all input belief functions to those which satisfy
constraints of the DSm model in question at first; and perform static fusion after. No dynamic
fusion is necessary in such a case.

A generalization of minC combination rule, whose computing mechanism (not a motivation
nor an interpretation) has a relation to the conjunctive rules on the free DSm model Mf (Θ)
already in its classic case [3], is under recent development. And it will also appear as a chapter
of this volume.

We have to mention also the question of a possible generalization of conditionalization,
related to particular combination rules to the domain of DSm hyper-power sets.

And we cannot forget for a new family of PCR rules [15], see also a chapter in this volume.
Comparison of these rules, rules presented in this chapter, generalized minC combination and
possibly some other belief combination rules on hyper-power sets can summarize the presented
topic.
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3.9 Conclusion

The classic rules for combination of belief functions have been generalized to be applicable to
hyper-power sets, which are used in DSm theory. The generalization forms a solid theoretical
background for full and objective comparison of the nature of the classic rules with the nature
of the DSm rule of combination. It also enables us to place the DSmT better among the other
approaches to belief functions.
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3.11 Appendix - proofs

3.11.1 Generalized Dempster’s rule

1) Correctness of the definition:
1a)

∑
X,Y ∈DΘ m1(X)m2(Y ) = 1 for any gbba’s m1,m2; multiples 0 ≤ m1(X)m2(Y ) ≤ 1 are

summed to m(A) for X ∩ Y ≡ A, ∅ 6= A ∈ DΘ
M, all the other multiples (i.e., for X ∩ Y = ∅

and for X ∩ Y = A /∈ DΘ
M) are normalized among ∅ 6= A ∈ DΘ

M. Hence the formula for the
generalized Dempster’s rule produces correct gbba m1 ⊕m2 for any input gbba’s m1,m2.
1b) It holds κ =

∑
X,Y ∈DΘ,X∩Y∈∅m1(X)m2(X) = 0 and K = 1

1−κ = 1 in the free DSm model

Mf . Hence we obtain the formula for the free model Mf as a special case of the general
formula.

2) Correctness of the generalization:
Let us suppose Shafer’s DSm modelM0, i.e., θi ∩ θj ≡ ∅ for i 6= j. There are no non-existential
constraints in M0. X ∩ Y ∈ ∅M0 iff {θi|θi ⊆ X} ∩ {θj |θj ⊆ Y } = ∅, hence the same multiples
m1(X)m2(Y ) are assigned to X∩Y = A /∈ ∅ in both the classic and the generalized Dempster’s
rule on Shafer’s DSm model, and the same multiples are normalized by both of the rules. Thus,
the results are the same for any m1,m2 on M0 and for any A ⊆ Θ and other A ∈ DΘ. Hence
the generalized Dempster’s rule is really a generalization of the classic Dempster’s rule.

3) Equivalence of expressions: (m1 ⊕m2)(A)
?
= φ(A)[S⊕

1 (A) + S⊕
2 (A) + S⊕

3 (A)]

φ(A)[S⊕
1 (A) + S⊕

2 (A) + S⊕
3 (A)] = φ(A)

∑

X∩Y ≡A
m1(X)m2(Y )+

φ(A)[
S1(A)∑

Z∈DΘ Z/∈∅
S1(Z)

∑

X,Y ∈ ∅M

m1(X)m2(Y )+

S1(A)∑
Z∈DΘ Z/∈∅

S1(Z)

∑

X∪Y /∈ ∅, X∩Y ∈ ∅M

m1(X)m2(Y )]
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For A /∈ ∅ we obtain the following (as mi(∅) = 0):

∑

X∩Y≡A/∈∅

m1(X)m2(Y ) + [
S1(A)∑

Z∈DΘ Z/∈∅
S1(Z)

∑

X∩Y ∈ ∅

m1(X)m2(Y )] =

∑

X∩Y≡A/∈∅

m1(X)m2(Y ) +

∑
X∩Y≡A/∈∅

m1(X)m2(Y )∑
X∩Y /∈ ∅

m1(X)m2(Y )

∑

X∩Y ∈ ∅

m1(X)m2(Y ) =

∑

X∩Y≡A/∈∅

m1(X)m2(Y )(1 +
1∑

X∩Y /∈ ∅
m1(X)m2(Y )

∑

X∩Y ∈ ∅

m1(X)m2(Y )) =

∑

X∩Y≡A/∈∅

m1(X)m2(Y )(
1 −∑X∩Y ∈ ∅

m1(X)m2(Y )

1 −∑X∩Y ∈ ∅
m1(X)m2(Y )

+

∑
X∩Y ∈ ∅

m1(X)m2(Y )

1−∑X∩Y ∈ ∅
m1(X)m2(Y )

) =

∑

X∩Y≡A/∈∅

m1(X)m2(Y )(
1

1−∑X∩Y ∈ ∅
m1(X)m2(Y )

) =

∑

X∩Y≡A/∈∅

m1(X)m2(Y )
1

1− κ =
∑

X∩Y≡A/∈∅

Km1(X)m2(Y ) = (m1 ⊕m2)(A).

For A ∈ ∅ we obtain:

φ(A)[S⊕
1 (A) + S⊕

2 (A) + S⊕
3 (A)] = 0 · [S⊕

1 (A) + S⊕
2 (A) + S⊕

3 (A)] = 0 = (m1 ⊕m2)(A).

Hence the expression in DSm form is equivalent to the definition of the generalized Dempster’s
rule.

3.11.2 Generalized Yager’s rule

1) Correctness of the definition:
1a)

∑
X,Y ∈DΘ,X∩Y=Am1(X)m2(Y ) = 1 for any gbba’s m1,m2; multiples 0 ≤ m1(X)m2(Y ) ≤ 1

are summed to m(A) for X ∩ Y = A /∈ ∅, all the other multiples (i.e., for X ∩ Y = A ∈ ∅)
are summed to ΘM. Hence the formula for the generalized Yager’s rule produces correct gbba
m1 Y©m2 for any input gbba’s m1,m2.
1b) It holds

∑
X,Y ∈DΘ,X∩Y ∈∅m1(X)m2(X) = 0 in the free DSm modelMf . Thus (m1 Y©m2)(Θ) =

m1(Θ)m2(Θ). Hence we obtain the formula for the free modelMf as a special case of the general
formula.

2) Correctness of the generalization:
Let us suppose Shafer’s DSm modelM0, i.e., θi ∩ θj ≡ ∅ for i 6= j. There are no non-existential
constraints in M0. X ∩ Y ∈ ∅M iff {θi|θi ⊆ X} ∩ {θj |θj ⊆ Y } = ∅, hence the same multiples
m1(X)m2(Y ) are assigned to X ∩ Y = A /∈ ∅, A 6= Θ in both the classic and the generalized
Yager’s rule on Shafer’s DSm model, and the same multiples are summed to Θ by both of the
rules. Thus, the results are the same for any m1,m2 on M0 and any A ⊆ Θ (A ∈ DΘ). Hence
the generalized Yager’s rule is a correct generalization of the classic Yager’s rule.

3) Equivalence of expressions: (m1 Y©m2)(A)
?
= φ(A)[S Y©

1 (A) + S Y©
2 (A) + S Y©

3 (A)]
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For ΘM 6= A /∈ ∅ we obtain the following:

φ(A)[S
Y©
1 (A) + S

Y©
2 (A) + S

Y©
3 (A)] = φ(A)[

∑

X∩Y ≡A
m1(X)m2(Y ) + 0 + 0]

=
∑

X∩Y≡A/∈∅

m1(X)m2(Y ) = (m1 Y©m2)(A).

For A = ΘM we obtain the following:

φ(ΘM)
∑

X∩Y ≡ΘM

m1(X)m2(Y ) + φ(ΘM)[
∑

X,Y ∈ ∅M

m1(X)m2(Y )

+
∑

X∪Y /∈ ∅, X∩Y ∈ ∅M

m1(X)m2(Y )]

=
∑

X∩Y≡ΘM

m1(X)m2(Y ) + [
∑

X∩Y ∈ ∅M

m1(X)m2(Y )] = (m1 Y©m2)(ΘM).

For A ∈ ∅ we obtain φ(A)[S Y©
1 (A) +S Y©

2 (A) +S Y©
3 (A)] = 0[S Y©

1 (A) + 0 + 0] = 0 = (m1⊕m2)(A).
Hence the expression in DSm form is equivalent to the definition of the generalized Yager’s rule.

3.11.3 Generalized Dubois-Prade rule

1) Correctness of the definition:
1a)

∑
X,Y ∈DΘm1(X)m2(Y ) = 1 for any gbba’s m1,m2; Let us assume that m1,m2 satisfy all

the constraints of DSm model M, thus m1(X) ∪ m2(Y ) /∈ ∅ for any X,Y ∈ DΘ
M; multiples

0 ≤ m1(X)m2(Y ) ≤ 1 are summed to m(A) for X ∩ Y = A /∈ ∅, all the other multiples
(i.e., for X ∩ Y = A ∈ ∅) are summed and added to m(A), where A = X ∪ Y , with the simple
generalized Dubois-Prade rule. Hence the simple generalized Dubois-Prade rule produces correct
gbba m1 ⊕m2 for any input gbba’s m1,m2 which satisfy all the constraints of the used DSm
model M.
Let us assume a DSm model M without non-existential constraints, now, thus UX∪Y /∈ ∅ for
any ∅ 6= X,Y ∈ DΘ

M; multiples 0 ≤ m1(X)m2(Y ) ≤ 1 are summed and added to m(A) for
X ∩ Y = A /∈ ∅, other multiples are summed to m(A) for X ∪ Y = A /∈ ∅, X ∩ Y = A ∈ ∅,
all the other multiples (i.e., for X ∪ Y = A ∈ ∅) are summed and added to m(A) where
A = UX∪Y , with the generalized Dubois-Prade rule. Hence the generalized Dubois-Prade rule
produces correct gbba m1 ⊕m2 for any input gbba’s m1,m2 on DSm model M without non-
existential constraints.
For a fully general dynamic belief fusion on any DSm model the following holds:
multiples 0 ≤ m1(X)m2(Y ) ≤ 1 are summed to m(A) for X ∩ Y = A /∈ ∅, other multiples are
summed and added to m(A) for X ∪Y = A /∈ ∅, X ∩ Y = A ∈ ∅, other multiples are summed
and added to m(A) for UX∪Y = A /∈ ∅, X ∪ Y = A ∈ ∅, all the other multiples (i.e., for
UX∪Y = A ∈ ∅) are summed and added to ΘM. Hence the extended generalized Dubois-Prade
rule produces correct gbba m1DP©m2 for any input gbba’s m1,m2 on any hybrid DSm model.

1b) It holds since
∑

X,Y ∈DΘ, X∩Y ∈∅m1(X)m2(X) = 0 =
∑

X∪Y ∈∅ m1(X)m2(X) and one has

also
∑

X∪Y ∈∅ m1(X)m2(X) =
∑

UX∪Y ∈∅m1(X)m2(X) in the free DSm model Mf . Hence, the

Dubois-Prade rule for the free modelMf is a special case of all the simple generalized Dubois-
Prade rule, the generalized Dubois-Prade rule, and the extended generalized Dubois-Prade rule.
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2) Correctness of the generalization:
Let us suppose Shafer’s DSm modelM0 and input BF’s onM0, i.e., θi∩θj ≡ ∅ for i 6= j. There
are no non-existential constraints in M0. X ∩ Y ∈ ∅M0 iff {θi|θi ⊆ X} ∩ {θj |θj ⊆ Y } = ∅,
hence the same multiples m1(X)m2(Y ) are assigned to X ∩ Y = A /∈ ∅, A 6= Θ in both the
classic and the generalized Dubois-Prade rule on Shafer’s DSm model, and the same multiples
are summed and added to X ∪ Y = A /∈ ∅ by both of the rules. X ∪ Y /∈ ∅ for any couple
X,Y ∈ DΘ in Shafer’s model, thus the 3rd sum in the generalized Dubois-Prade rule and the
4th sum in the extended rule for ΘM are always equal to 0 in Shafer’s DSm model. Thus, the
results are always the same for any m1,m2 on M0 and any A ⊆ Θ (and A ∈ DΘ). Hence all
the simple generalized Dubois-Prade rule, the generalized Dubois-Prade rule, and the extended
generalized Dubois-Prade rule are correct generalizations of the classic Dubois-Prade rule.

3) Equivalence of expressions: (m1DP©m2)(A)
?
= φ(A)[SDP©

1 (A) + SDP©
2 (A) + SDP©

3 (A)]

φ(A)[S
DP©
1 (A) + S

DP©
2 (A) + S

DP©
3 (A)] =

φ(A)[
∑

X∩Y ≡A
m1(X)m2(Y ) +

∑

X∪Y ∈∅M, UX∪Y ≡A
m1(X)m2(Y )+

∑

X∩Y ∈∅M, (X∪Y )≡A
m1(X)m2(Y )]

For A /∈ ∅ we simply obtain the following:

1 · [
∑

X∩Y≡A
m1(X)m2(Y ) +

∑

X∪Y ∈∅M, UX∪Y ≡A
m1(X)m2(Y )+

∑

X∩Y ∈∅M, (X∪Y )≡A
m1(X)m2(Y )] = (m1DP©m2)(A),

and for A ∈ ∅, one gets

0 · [SDP©
1 (A) + S

DP©
2 (A) + S

DP©
3 (A)] = 0 = (m1DP©m2)(∅).

The proof for the simple generalized Dubois-Prade rule is a special case of this proof with
SDP©

2 (A) ≡ 0.

The same holds for the extended generalized Dubois-Prade rule for A ∈ ∅ and for ΘM 6=
A /∈ ∅.

For A = ΘM we obtain the following:
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1 · [
∑

X∩Y≡ΘM

m1(X)m2(Y ) +
∑

X∪Y ∈∅M, [UX∪Y ≡ΘM]∨[UX∪Y ∈∅M]

m1(X)m2(Y )

+
∑

X∩Y ∈∅M, (X∪Y )≡ΘM

m1(X)m2(Y )] =

[
∑

X∩Y≡A
m1(X)m2(Y ) +

∑

X∪Y ∈∅M, UX∪Y ≡ΘM

m1(X)m2(Y ) +
∑

UX∪Y ∈∅M

m1(X)m2(Y )

+
∑

X∩Y ∈∅M, (X∪Y )≡ΘM

m1(X)m2(Y )] = (m1DP©m2)(ΘM)

Hence all three versions of the expression in DSm form are equivalent to the corresponding
versions of the definition of the generalized Dubois-Prade rule.

3.11.4 Comparison statements

Statement 1: trivial.
Statement 2(ii): Let us compare definitions of DSmH rule and the generalized Dubois-Prade

rule in DSm form. We have SDP©
1 (A) = S1(A), we can simply observe that SDP©

3 (A) = S3(A).

We have already mentioned that UX∪Y = U = u(X)u(Y ), thus also SDP©
2 (A) = S2(A). Hence

(m1DP©m2)(A) = (m1 #©m2)(A) for any A and any m1,m2 in any hybrid DSm model.
Statement 2(i): If all constraints are satisfied by all input beliefs, we have m1(X) = m2(Y ) = 0

for any X,Y ∈ ∅M and S2(A) = 0 = SDP©
2 (A). If some constraints are not satisfied, but

there is no non-existential constraint in model M, then U = UX∪Y /∈ ∅M, and S2(A) =∑
X,Y ∈∅M, UM=Am1(X)m2(Y ) =

∑
X,Y ∈∅M, UX∪Y ∩IM=Am1(X)m2(Y ) = SDP©

2 (A) again.




