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Abstract: The objective of this chapter is to present and compare different fusion
rules which can be used for Generalized Data Association (GDA) for multitarget
tracking (MTT) in clutter. Most of tracking methods including Target Identification
(ID) or attribute information are based on classical tracking algorithms such PDAF,
JPDAF, MHT, IMM, etc. and either on the Bayesian estimation and prediction of
target ID, or on fusion of target class belief assignments through the Dempster-Shafer
Theory (DST) and Dempster’s rule of combination. The main purpose of this study
is to pursue our previous works on the development of a new GDA-MTT based
on Dezert-Smarandache Theory (DSmT) but compare it also with standard fusion
rules (Dempster’s, Dubois & Prade’s, Yager’s) and with the new fusion rules: Pro-
portional Conflict Redistribution rule No.5(PCR5), fusion rule based on T-Conorm
and T-Norm Fuzzy Operators(TCN rule) and the Symmetric Adaptive Combination
(SAC) rule. The goal is to assess the efficiency of all these different fusion rules
for the applied GDA-MTT in critical, highly conflicting situation. This evaluation
is based on a Monte Carlo simulation for a particular difficult maneuvering MTT
problem in clutter.

This work is partially supported by MONT grants I1205/02, MI-1506/05 and by Center of Excellence
BIS21++ grant (FP6-2004-ACC-SSA-2).
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12.1 Introduction

The idea of incorporating Target Identification (ID) information or target attribute measure-
ments into classical (i.e. kinematics-based) tracking filters to improve multitarget tracking
systems is not new and many approaches have been proposed in the literature over the last
fifteen years. For example, in [14, 15, 21] an improved PDAF (Probabilistic Data Association
Filter) had been developed for autonomous navigation systems based on Target Class ID and
ID Confusion matrix, and also on another version based on imprecise attribute measurements
combined within Dempster’s rule. At the same time Lerro in [20] developed the AI-PDAF
(Amplitude Information PDAF). Since the nineties many improved versions of classical track-
ing algorithms like IMM, JPDAF, IMM-PDAF, MHT, etc. including attribute information
have been proposed (see [12] and [6] for a recent overview). Recent contributions have been
done by Blasch and al. in [7–10, 31] for Group Target Tracking and classification. In last two
years efforts have been done also by Hwang and al. in [17–19]. We recently discovered that the
Hwang’s MTIM (Multiple-target Tracking and Identity Management) algorithm is very close to
our Generalized Data Association GDA-MTT. The difference between MTIM and GDA-MTT
lies fundamentally in the Attribute Data Association procedure. MTIM is based on MAJPDA
(Modified Approximated JPDA) coupled with RMIMM (Residual-mean Interacting Multiple
Model) algorithm while the GDA-MTT is based on GNN (Global Nearest Neighbour) approach
for data association incorporating both kinematics and attribute measurements (with more so-
phisticated fusion rules dealing with fuzzy, imprecise and potentially highly conflicting target
attribute measurements), coupled with standard IMM-CMKF(Converted Measurement Kalman
Filter) [1, 5, 23]. The last recent attempt for solving the GDA-MTT problem was proposed by
Bar-Shalom and al. in [6] and expressed as a multiframe assignment problem where the multi-
frame association likelihood was developed to include the target classification results based on
the confusion matrix that specifies the prior accuracy of the target classifier. Such multiframe
s-D assignment algorithm should theoretically provide performances close to the optimality for
MTT systems but remains computationally greedy. The purpose of this chapter is to compare
the performances of several fusion rules usable into our new GDA-MTT algorithm based on
a difficult MTT scenario with eleven closely spaced and maneuvering in some regions targets,
belonging only to two classes within clutter and with only 2D kinematical measurements and
attribute measurement.

This chapter is organized as follows. In section 12.2 we present our approach for GDA-
MTT algorithm emphasizing only on the new developments in comparison with our previous
GDA-MTT algorithm, developed in [26, 29]. In our previous works, we proved the efficiency of
GDA-MTT (in term of Track Purity Performance) based on the DSm Hybrid rule of combination
over the GDA-MTT based on Dempster’s rule but also over the KDA-MTT (Kinematics-only-
based Data Association) trackers on simple two targets scenarios (with and without clutter). In
section 12.3 we remind the main fusion rules we investigate for our new GDA-MTT algorithm.
Most of these rules are well-known in the literature [24, 26], but the PCR5, TCN and SAC
rules presented here, which are really new ones, were recently proposed in [16, 27, 28, 30].
Due to space limitations, we assume that the reader is familiar with basics on Target Tracking
[2–5, 11, 12], on DST [25] and on DSmT [26] for fusion of uncertain, imprecise and possibly
highly conflicting information. Section 12.4 presents and compares several Monte Carlo results
for different versions of our GDA-MTT algorithm based on the fusion rules proposed in section
12.3 for a particular MTT scenario. Conclusion is given in section 12.5.
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12.2 General principle of GDA-MTT

Classical target tracking algorithms consist mainly in two basic steps: data association to as-
sociate proper measurements (usually kinematics measurement z(k) representing either posi-
tion, distance, angle, velocity, acceleration, etc.) with correct targets and track filtering to
estimate and predict the state of targets once data association has been performed. The
first step is very important for the quality of tracking performance since its goal is to asso-
ciate correctly (or at least as best as possible) observations to existing tracks (or eventually
new born targets). The data association problem is very difficult to solve in dense multi-
target and cluttered environment. To eliminate unlikely (kinematics-based) observation-to-
track pairings, the classical validation test is carried on the Mahalanobis distance d2(i, j) ,
(zj(k) − ẑi(k|k − 1))′S−1(k)(zj(k) − ẑi(k|k − 1)) ≤ γ computed from the measurement zj(k)
and its prediction ẑi(k|k − 1) computed by the tracker of target i (see [2] for details). Once
all the validated measurements have been defined for the surveillance region, a clustering pro-
cedure defines the clusters of the tracks with shared observations. Further the decision about
observation-to-track associations within the given cluster with n existed tracks and m received
measurements is considered. The Converted Measurement Kalman Filter coupled with a clas-
sical IMM (Interacting Multiple Model) for maneuvering target tracking is used to update the
targets’ state vectors.
This new GDA-MTT improves data association process by adding attribute measurements (like
amplitude information or RCS (radar cross section)), or eventually as in [6] Target ID de-
cision coupled with confusion matrix, to classical kinematical measurements to increase the
performance of the MTT system. When attribute data are available, the generalized (kine-
matics and attribute) likelihood ratios are used to improve the assignment. The GNN ap-
proach is used in order to make a decision for data association. Our new GDA approach
consists in choosing a set of assignments {χij}, for i = 1, . . . n and j = 1, . . . ,m, that as-
sures maximum of the total generalized likelihood ratio sum by solving the classical assign-
ment problem min

∑n
i=1

∑m
j=1 aijχij using the extended Munkres algorithm [13] and where

aij = − log(LRgen(i, j)) with LRgen(i, j) = LRk(i, j)LRa(i, j), where LRk(i, j) and LRa(i, j)
are kinematics and attribute likelihood ratios respectively, and

χij =

{
1 if measurement j is assigned to track i

0 otherwise

and where the elements aij of the assignment matrix A = [aij ] take the following values [22]:

aij =

{
∞ if d2

ij > γ

− log(LRk(i, j)LRa(i, j)) if d2
ij ≤ γ

The solution of the assignment matrix is the one that minimizes the sum of the chosen elements.
We solve the assignment problem by realizing the extension of Munkres algorithm, given in [13].
As a result one obtains the optimal measurements to tracks association. Once the optimal
assignment is found, i.e. the (what we feel) correct association is available, then standard
tracking filter is used depending on the dynamics of the target under tracking. We will not recall
classical tracking filtering methods here which can be found in many standard textbooks [5, 12].
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12.2.1 Kinematics Likelihood Ratios for GDA

The kinematics likelihood ratios LRk(i, j) involved into aij are quite easy to obtain because they
are based on classical statistical models for spatial distribution of false alarms and for correct
measurements [5]. LRk(i, j) is evaluated as LRk(i, j) = LF true(i, j)/LF false where LF true is
the likelihood function that the measurement j originated from target (track) i and LF false the
likelihood function that the measurement j originated from false alarm. At any given time k,
LF true is defined1 as LF true =

∑r
l=1 µl(k)LF l(k) where r is the number of the models (in our

case of two nested models r = 2 is used for CMKF-IMM), µl(k) is the probability (weight) of the
model l for the scan k, LF l(k) is the likelihood function that the measurement j is originated
from target (track) i according to the model l, i.e. LF l(k) = 1

2π
√

|Si
l(k)|

e−d
2
l (i,j)/2. LF false is

defined as LF false = Pfa/Vc, where Pfa is the false alarm probability and Vc is the resolution
cell volume chosen as in [6] as Vc =

∏nz
i=1

√
12Rii. In our case, nz = 2 is the measurement vector

size and Rii are sensor error standard deviations for azimuth β and distance D measurements.

12.2.2 Attribute Likelihood Ratios for GDA

The major difficulty to implement GDA-MTT depends on the correct derivation of coefficients
aij, and more specifically the attribute likelihood ratios LRa(i, j) for correct association between
measurement j and target i based only on attribute information. When attribute data are
available and their quality is sufficient, the attribute likelihood ratio helps a lot to improve
MTT performance. In our case, the target type information is utilized from RCS attribute
measurement through fuzzification interface proposed in [29]. A particular confusion matrix is
constructed to model the sensor’s classification capability. This work presents different possible
issues to evaluate LRa(i, j) depending on the nature of the attribute information and the fusion
rules used to predict and to update each of them. The specific attribute likelihood ratios are
derived within both DSmT and DST frameworks.

12.2.2.1 Modeling the Classifier

The way of constructing the confusion matrix is based on some underlying decision-making
process based on specific attribute features measurements. In this particular case, it is based
on the fuzzification interface, described in our previous work [26, 29]. Through Monte Carlo
simulations, the confusion matrix for two different average values of RCS is obtained, in terms of
the first frame of hypotheses Θ1 = {(S)mall, (B)ig}. Based on the fuzzy rules, described in [29],
defining the correspondence between RCS values and the respective targets’ types, the final
confusion matrix T = [tij] in terms of the second frame of hypotheses Θ2 = {(F)ighter, (C)argo}
is constructed. Their elements tij represent the probability to declare that the target type is i
when its real type is j. Thus the target’s type probability mass vector for classifier output is
the j-th column of the confusion matrix T. When false alarms arise, their mass vector consists
in an equal distribution of masses among the two classes of targets.

12.2.2.2 Attribute Likelihood Ratio within DSmT

The approach for deriving LRa(i, j) within DSmT is based on relative variations of pignistic
probabilities [26] for the target type hypotheses, Hj (j = 1 for Fighter, j = 2 for Cargo)

1where indexes i and j have been omitted here for LF notation convenience.
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included in the frame Θ2 conditioned by the correct assignment. These pignistic probabilities
are derived after the fusion between the generalized basic belief assignments of the track’s old
attribute state history and the new attribute/ID observation, obtained within the particular
fusion rule. It is proven [26] that this approach outperforms most of the well-known ones for
attribute data association. It is defined as:

δi(P
∗) =

| ∆i(P
∗|Z)−∆i(P

∗|Ẑ = Ti) |
∆i(P ∗|Ẑ = Ti)

(12.1)

where 



∆i(P
∗|Z) =

∑2
j=1

|P ∗
TiZ(Hj)−P ∗

Ti
(Hj)|

P ∗
Ti

(Hj)

∆i(P
∗|Ẑ = Ti) =

∑2
j=1

|P ∗
TiZ=Ti

(Hj)−P ∗
Ti

(Hj)|
P ∗

Ti
(Hj)

i.e. ∆i(P
∗|Ẑ = Ti) is obtained by forcing the attribute observation mass vector to be the same

as the attribute mass vector of the considered real target, i.e. mZ(.) = mTi(.). The decision
for the right association relies on the minimum of expression (12.1). Because the generalized
likelihood ratio LRgen is looking for the maximum value, we define the final form of the attribute
likelihood ratio to be inversely proportional to the δi(P

∗) with i defining the number of the track,
i.e. LRa(i, j) = 1/δi(P

∗).

12.2.2.3 Attribute Likelihood Ratio within DST

LRa(i, j) within DST is defined from the derived attribute likelihood function proposed in [3, 12].
If one considers the observation-to-track fusion process using Dempster’s rule, the degree of
conflict kij is computed as the assignment of mass committed to the conflict, i.e. m(∅). The
larger this assignment is, the less likely is the correctness of observation j to track i assignment.
Then, the reasonable choice for the attribute likelihood function is LHF i,j = 1 − kij . The
attribute likelihood function for the possibility that a given observation j originated from the
false alarm is computed as LHF fa,j = 1 − kfa,j . Finally the attribute likelihood ratio to be
used in GDA is obtained as LRa(i, j) = LHF i,j/LHF fa,j .

12.3 Fusion rules proposed for GDA-MTT

Imprecise, uncertain and even contradicting information or data are characteristics of the real
world situations and must be incorporated into modern MTT systems to provide a complete
and accurate model of the monitored problem. On the other hand, the conflict and paradoxes’
management in collected knowledge is a major problem especially during the fusion of many
information sources. Indeed the conflict increases with the number of sources or with the num-
ber of processed scans in MTT. Hence a reliable issue for processing and/or reassigning the
conflicting probability masses is required. Such a situation involves also some decision-making
procedures based on specific data bases to achieve proper knowledge extraction for a better
understanding of the overall monitored problem. It is important and valuable to achieve hi-
erarchical extraction of relevant information and to improve the decision accuracy such that
highly accurate decisions can be made progressively. There are many valuable fusion rules in
the literature to deal with imperfect information based on different mathematical models and
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on different methods for transferring the conflicting mass onto admissible hypotheses of the
frame of the problem. DST [24, 25] was the first theory for combining uncertain information
expressed as basic belief assignments with Dempster’s rule.
Recently, DSmT [26] was developed to overcome the limitations of DST (mainly due to the
well-known inconsistency of Dempster’s rule for highly conflicting fusion problem and the limi-
tations of the Shafer’s model itself) and for combining uncertain, imprecise and possibly highly
conflicting sources of information for static or dynamic fusion applications. DSmT is actually
a natural extension of DST. The major differences between these two theories is on the nature
of the hypotheses of the frame Θ on which are defined the basic belief assignments (bba) m(.),
i.e. either on the power set 2Θ for DST or on the hyper-power set (Dedekind’s lattice., i.e. the
lattice closed by ∩ and ∪ set operators) DΘ for DSmT. Let’s consider a frame Θ = {θ1, . . . , θn}
of finite number of hypotheses assumed for simplicity to be exhaustive. Let’s denote GΘ the
classical power set of Θ (if we assume Shafer’s model with all exclusivity constraints between
elements of Θ) or denote GΘ the hyper-power set DΘ (if we adopt DSmT and we know that
some elements can’t be refined because of their intrinsic fuzzy and continuous nature). A basic
belief assignment m(.) is then defined as m : GΘ → [0, 1] with m(∅) = 0 and

∑
X∈GΘ m(X) = 1.

The differences between DST and DSmT lie in the model of the frame Θ one wants to deal with
but also in the rules of combination to apply. Recently in [30] the authors propose to connect
the combination rules for information fusion with particular fuzzy operators, focusing on the
T-norm based Conjunctive rule as an analog of the ordinary conjunctive rule of combination. It
is especially because the conjunctive rule is appropriate for identification problems, restricting
the set of hypotheses one is looking for. A new fusion rule, called Symmetric Adaptive Combi-
nation (SAC) rule, has been recently proposed in [16] which is an adaptive mixing between the
disjunctive and conjunctive rule.

The main fusion rules we have investigated in this work, already presented in details in Chapter
1 of this volume and in [26], are: Dempster’s rule, Yager’s rule, Dubois & Prade’s rule, Hybrid
DSm fusion rule, and PCR5 fusion rule. Moreover the two following fusion rules have been also
tested and analyzed in this work:

• T-Conorm-Norm fusion rule

The TCN (T-Conorm-Norm) rule represents a new class of combination rules based on
specified fuzzy T-Conorm/T-Norm operators. It does not belong to the general Weighted
Operator Class. This rule takes its source from the T-norm and T-conorm operators
in fuzzy logics, where the AND logic operator corresponds in information fusion to the
conjunctive rule and the OR logic operator corresponds to the disjunctive rule. The
general principle of the new TCN rule developed in [30] consists in the following steps :

– Step 1: Defining the min T-norm conjunctive consensus: The min T-norm conjunc-

tive consensus is based on the default min T-norm function. The way of association
between the focal elements of the given two sources of information is defined as
X = Xi ∩Xj , and the degree of association is as follows:

m̃(X) = min {m1(Xi),m2(Xj)}
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where m̃(X) represents2 the mass of belief associated to the given proposition X
by using T-Norm based conjunctive rule. The TCN Combination rule in Dempster
Shafer Theory framework is defined for ∀X ∈ 2Θ by the equation:

m̃(X) =
∑

Xi ∩ Xj = X

Xi, Xj ∈ 2
Θ

min {m1(Xi),m2(Xj)} (12.2)

– Step 2: Distribution of the mass, assigned to the conflict

The distribution of the mass, assigned to the obtained partial conflicts follows in
some degree the distribution of conflicting mass in DSmT Proportional Conflict Re-
distribution Rule 5 [27], but the procedure here is based on fuzzy operators. Let us
denote the two bbas, associated with the information sources in a matrix form:

[
m1(.)
m2(.)

]
=

[
m1(θ1) m1(θ2) m1(θ1 ∪ θ2)
m2(θ1) m2(θ2) m2(θ1 ∪ θ2)

]

The general procedure for fuzzy based PCR5 conflict redistribution is as follows:

∗ Calculate all partial conflicting masses separately;

∗ If θ1 ∩ θ2 = �, then θ1 and θ2 are involved in the conflict; redistribute the
corresponding masses m12(θ1∩θ2) > 0 involved in the particular partial conflicts
to the non-empty sets θ1 and θ2 with respect to the maximum between m1(θ1)
and m2(θ2) and with respect to the maximum between m1(θ2) and m2(θ1) ;

∗ Finally, for the given above two sources the min T-Norm conjunctive consensus
yields:

m̃(θ1) = min(m1(θ1),m2(θ1))+min(m1(θ1),m2(θ1∪θ2))+min(m1(θ1∪θ2),m2(θ1))

m̃(θ2) = min(m1(θ2),m2(θ2))+min(m1(θ2),m2(θ1∪θ2))+min(m1(θ1∪θ2),m2(θ2))

m̃(θ1 ∪ θ2) = min(m1(θ1 ∪ θ2),m2(θ1 ∪ θ2))

∗ The basic belief assignment, obtained as a result of the applied TCN rule with
fuzzy based Proportional Conflict Redistribution Rule 5 becomes:

m̃PCR5(θ1) = m̃(θ1)+m1(θ1)×min(m1(θ1),m2(θ2))

max(m1(θ1),m2(θ2))
+m2(θ1)×min(m1(θ2),m2(θ1))

max(m1(θ2),m2(θ1))

m̃PCR5(θ2) = m̃(θ2)+m2(θ2)×min(m1(θ1),m2(θ2))

max(m1(θ1),m2(θ2))
+m1(θ2)×min(m1(θ2),m2(θ1))

max(m1(θ2),m2(θ1))

2We introduce in this chapter the over-tilded notation for masses to specify that the masses of belief are
obtained with fuzzy T-norm operator.
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– Step 3: Normalization of the result:

The final step of the TCN rule concerns the normalization procedure:

m̃PCR5(X) =
m̃PCR5(X)∑

X 6= �

X ∈ 2
Θ

m̃PCR5(X)
.

The nice features of the new rule could be defined as: very easy to implement, satisfying
the impact of neutrality of Vacuous Belief Assignment; commutative, convergent to idem-
potence, reflecting majority opinion, assuring an adequate data processing in case of total
conflict.

• Symmetric Adaptive Combination rule

The generic adaptive combination rule (ACR) is a mixing between the disjunctive and
conjunctive rule and it is defined by mACR(A) = 0 and ∀A ∈ 2Θ by:

mACR(A) = α(k12).m∪(A) + β(k12).m∩(A) ,

where α and β are functions of the conflict k12 = m∩(�) from [0, 1] to [0,+∞]. mACR(.)
must be a normalized bba(assuming a closed world) and a desirable behavior of ACR is
that it should act more like the disjunctive rule whenever k12 → 1 (at least one source
is unreliable), while it should act more like the conjunctive rule, when k12 → 0 (both
sources are reliable). The three following conditions have to be satisfied by the weighting
functions α and β:

– C1: α is increasing with α(0) = 0 and α(1) = 1;

– C2: β is decreasing with β(0) = 1 and β(1) = 0;

– C3: α(k12) = 1− (1− k12)β(k12).

A symmetric AC (SAC rule) with symmetric weightings for m∩(.) and m∪(.) is defined
by mSAC(�) = 0 and ∀A ∈ 2Θ by:

mSAC(A) = α0(k12).m∪(A) + β0(k12).m∩(A) ,

where

α0(k12) =
k12

1− k12 + k2
12

;

β0(k12) =
1− k12

1− k12 + k2
12

.

12.4 Simulation scenario and results

12.4.1 Simulation scenario

The simulation scenario (Fig.12.1) consists of eleven air targets with only two classes. The
stationary sensor is located at the origin. The sampling period is Tscan = 5 sec and measurement
standard deviations are 0.3 deg and 100 m for azimuth and range respectively. The targets go
from West to East in three groups with the following type order CFCFCFCFCFC (F=Fighter,
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C=Cargo) with constant velocity 100m/sec. The first group consists of three targets (CFC)
moving from North-West with heading 120 degrees from North. At scan number 15th the group
performs a maneuver with transversal acceleration 5.2m/s2 and settles towards East, moving in
parallel according to X axis. The second group consists of five closely spaced targets (FCFCF)
moving in parallel from West to East without maneuvering. The third group consists of three
targets (CFC) moving from South-West with heading 60 degrees from North. At scan number
15th the group performs a maneuver with transversal acceleration −5.2m/s2 and settles towards
East, moving in parallel according to X axis. The inter-distance between the targets during
scans 17th - 48th (the parallel segment) is approximately 300 m. At scan number 48th the
first and the third group make new maneuvers. The first one is directed to North-East and
the second - to South-East. Process noise standard deviations for the two nested models for
constant velocity IMM are 0.1m/s2 and 7m/s2 respectively. The number of false alarms (FA)
follows a Poisson distribution and FA are uniformly distributed in the surveillance region.
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Figure 12.1: Multitarget Scenario with eleven targets

Monte Carlo simulations are made for two different average values of Radar Cross Section in or-
der to obtain the confusion matrix in terms of the first frame of hypotheses Θ1 = {Small,Big}.
According to the fuzzy rules in [26, 29], defining the correspondence between Radar Cross Sec-
tion values and the respective targets’ types, the confusion matrix in terms of the second frame
of hypotheses Θ2 = {Fighter, Cargo} is constructed. The two simulation cases correspond to
the following parameters for the probability of target detection, the probability of false alarms
and the confusion matrices:

• Case 1: Pd = 1.0, Pfa = 0.0, T1 =

[
0.995 0.005
0.005 0.995

]

• Case 2: Pd = 0.98, Pfa = 1.e−5, T2 =

[
0.95 0.05
0.05 0.95

]
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12.4.2 Simulation results

In this section we present and discuss the simulation results for 100 Monte Carlo runs. The
evaluation of fusion rules’ performance is based on the criteria of tracks’ purity, tracks’ life,
percentage of miscorrelation and variation of pignistic entropy in confirmed tracks’ attribute
states. Track’s purity criteria examines the ratio between the number of particular performed
(observation j-track i) associations (in case of detected target) over the total number of all
possible associations during the tracking scenario. Track’s life is evaluated as an average number
of scans before track’s deletion. The track deletion is performed after the a priori defined number
(in our case it is assumed to be 3) of incorrect associations or missed detections. The percentage
of miscorrelation examines the relative number of incorrect (observation-track) associations
during the scans. The results for GDA are obtained by different fusion rules. Relying on our
previous work [26, 29], where the performance of DSm Classic and DSm Hybrid rules were
examined, in the present work the attention is directed to the well-known Dempster’s rule,
Yager’s, Dubois & Prade’s, and especially to PCR5 and the new TCN and SAC rules. From
results presented in Tables 12.1-12.4 in next sections, it is obvious that for both cases 1 and 2
the track’s purity and tracks’ life in the case of KDA-MTT are significantly lower with respect
to all GDA-MTT, and a higher percentage of miscorrelation is obtained with KDA-MTT than
with GDA-MTT. The figures 12.2 and 12.3 show typical tracking performances for KDA-MTT
and GDA-MTT systems.

Figure 12.2: Typical performance with KDA-MTT

12.4.2.1 Simulation results for case 1

Case no. 1 is characterized by maximum probability of target detection, Pd = 1, probability of

false alarms Pfa = 0, and well defined confusion matrix: T1 =

[
0.995 0.005
0.005 0.995

]
. The problem
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Figure 12.3: Typical performance with GDA-MTT

consists in the proximity of the targets (inter-distance of 300 m) with bad sensor distance
resolution (σD = 100m). It results in cross-associations. The Monte Carlo results on track
purity based on KDA-MTT and on GDA-MTT (based on PCR5, Dempster’s (DS), Yager’s
(Y),Dubois & Prade’s (DP) rule (DP) rules3, DSmH) rule and the new TCN and SAC fusion
rules) are given in Table 12.1. Each number of the table gives the ratio of correct measurement-
target association for a given target and a given MTT algorithm and the last row of the table
provides the average purity performance for all targets and for each algorithm.
One can see that the corresponding fields for results obtained via Dempster’s rule of combination
are empty (see Tables 12.1-12.4). There are two major reasons for this:

1. The case of increasing intrinsic conflicts between the fused bodies of evidence (generalized
basic belief assignments of targets’ tracks histories and new observations), yields a poor
targets tracks’ performance. The situation when this conflict becomes unity, is a stressful,
but a real one. It is the moment, when Dempster’s rule produces indefiniteness. The fusion
process stops and the attribute histories of tracking tracks cannot be updated. As a result
the whole tracking process corrupts. Actually in such a case there is a need of an artificial
break and intervention into the real time tracking process, which could cause noncoherent
results. Taking into account all these particularities, we can summarize that the fusion
process within DST is not fluent and cannot be controlled without prior unjustified and
artificial assumptions and some heuristic engineering tricks. As a consequence no one of
the performance criteria cannot be evaluated.

2. In case when in the updated track’s attribute history one of the hypotheses in the frame of

3Yager’s rule, Dubois & Prade’s (DP) rule, DSmH) rule coincide in our example because we are working with
only a 2D specific classes frame Θ2. This is normal. In general, Yager’s, DP and DSmH) do no longer coincide
when the cardinality of the frame becomes greater than two.
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the problem is supported by unity, from this point on, Dempster’s rule becomes indifferent
to all observations, detected during the next scans. It means, the track’s attribute history
remains unchanged regardless of the new observations. It is a dangerous situation, which
hides the real opportunity for producing the non-adequate results.

KDA PCR5 TCN SAC DS DSmH/Y/DP/
T1 0.4102 0.9971 0.9971 0.9971 - 0.9971
T2 0.3707 0.9966 0.9769 0.9955 - 0.9953
T3 0.4226 0.9990 0.9793 0.9979 - 0.9978
T4 0.6198 0.9998 0.9703 0.9903 - 0.9903
T5 0.5826 0.9997 0.9541 0.9902 - 0.9867
T6 0.5836 1.0000 0.9743 1.0000 - 0.9964
T7 0.6174 1.0000 0.9500 0.9900 - 1.0000
T8 0.6774 0.9847 0.9478 0.9671 - 0.9847
T9 0.4774 0.9426 0.9478 0.8812 - 0.9410
T10 0.4241 0.9543 0.9645 0.7729 - 0.9528
T11 0.4950 0.9595 0.9581 0.8238 - 0.9595

Average 0.5164 0.9848 0.9655 0.9460 - 0.9820

Table 12.1: Track’s purity for KDA and GDA-MTT (case 1)

The results of the percentage of track’s life duration and miscorrelation are given in Table 12.2.

Trackers Track Life [%] MisCor [%]
KDA-MTT 58.15 48.36
GDAPCR5-MTT 98.75 1.52
GDATCN -MTT 97.03 3.45
GDASAC -MTT 95.23 5.40
GDADS-MTT - -
GDADSm/Y/DP -MTT 98.52 1.80

Table 12.2: Average Track’s life and Miscorrelations (case 1)

The figure 12.4 shows the average variation of pignistic entropy in tracks’ attribute histories
during the scans, obtained by using different fusion rules (PCR5, TCN, SAC and DSmH/Y/DP).
Looking on the results achieved according to GDA-MTT, it can be underlined that :

1. The tracks’ purity, obtained by PCR5 and DSmH/Y/DP rules outperform the tracks’
purity results obtained by using all other rules. In this 2D frame case based on Shafer’s
model DSmH/Y/DP tracks’ purity results are equal which is normal. The TCN rule leads
to a small (approximately 2 percent) decrease in GDA performance.

2. According to Table 12.2, the average tracks’ life and the percentage of miscorrelation
related to the performance of the PCR5 rule are a little bit better than the DSmH/Y/DP,
and outperforms all other rules’ results (approximately with 2 percent for TCN and with
3 percent for SAC rule).

3. According to the average values of pignistic entropy, associated with updated tracks’ at-
tribute histories during the consecutive scans (Fig.12.4), one can see that it is character-
ized with small values (for all fusion rules), in the interval [0, 0.05]. The entropy, obtained
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Figure 12.4: Average variation of Pignistic Entropy in tracks’ attribute histories

via PCR5 and SAC rules demonstrates smallest values, approaching zero, following by
DSmH/Y/DP and TCN fusion rules.

12.4.2.2 Simulation results for case 2

Case no. 2 (Pd = 0.98, Pfa = 1.e−5, T2 =

[
0.95 0.05
0.05 0.95

]
) is more difficult than case no.1 since

the presence of false alarms and missed target detections significantly degrade the process of
data association even in the case of GDA. But in comparison with KDA, one can see in Table
12.3 that the use of the attribute type information still helps to reduce the cross-associations
and increases the track’s purity performance. PCR5 rule behaves stable and keeps its best
performance in this difficult case, followed by DSmH/Y/DP, SAC and TCN rules. While in
case 1, the TCN performs very well (following PCR5 and DSmH/Y/DP), in case 2 it shows
poor tracks’ purity results, because of the fuzzy based processing and the confusion matrix’s
influence. The results of tracks’ life duration and miscorrelation are given in Table 12.4.

The figure 12.5 shows the average variation of pignistic entropy in tracks’ attribute histories
during the scans, obtained by using different fusion rules (PCR5, TCN, SAC and DSmH/Y/DP)
in case 2.
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KDA PCR5 TCN SAC DS DSmH/Y/DP/
T1 0.3055 0.8138 0.3660 0.3971 - 0.6431
T2 0.2717 0.7921 0.3219 0.3657 - 0.6252
T3 0.3338 0.7907 0.3657 0.4024 - 0.6550
T4 0.5114 0.8778 0.5074 0.6707 - 0.7709
T5 0.4022 0.8164 0.4071 0.6074 - 0.7209
T6 0.3712 0.8055 0.4588 0.6298 - 0.6922
T7 0.4069 0.8098 0.4464 0.6043 - 0.6921
T8 0.4545 0.8367 0.4974 0.6179 - 0.7359
T9 0.7436 0.7436 0.4253 0.4886 - 0.6310
T10 0.3040 0.7055 0.3931 0.4397 - 0.6202
T11 0.3697 0.7621 0.4566 0.5086 - 0.6414

Average 0.3742 0.7958 0.4223 0.5211 - 0.6753

Table 12.3: Track’s purity for KDA and GDA-MTT (case 2)

Trackers Track Life [%] MisCor [%]
KDA-MTT 45.87 62.58
GDAPCR5-MTT 84.26 20.42
GDATCN -MTT 50.34 57.77
GDASAC -MTT 59.26 47.89
GDADS-MTT - -
GDADSm/Y/DP -MTT 73.29 32.47

Table 12.4: Average Track’s life and Miscorrelations (case 2)

The variation of pignistic entropy in updated tracks’ attribute histories, based on all fusion rules
starts with peaks, because of the full ignorance, encountered in initial tracks’ attribute states
(initial tracks’ histories). During the next 3-4 scans it decreases gradually and settles in the
interval [0.05 − 0.3]. The pignistic entropies, obtained by PCR5 and SAC rules show smallest
values. It means that in this more difficult case 2, PCR5 and SAC rules lead to results which
are more informative in comparison with the other rules.

12.5 Conclusions

In this paper a comparison of the performances of different fusion rules is presented and com-
pared in order to assess their efficiency for GDA for MTT in highly conflicting situations in
clutter. A model of an attribute type classifier is considered on the base of particular input
fuzzification interface according to the target RCS values and on fuzzy rule base according to
the target type. A generalized likelihood ratio is obtained and included in the process of GDA.
The classification results rely on the confusion matrix specifying the accuracy of the classifier
and on the implemented fusion rules (Dempster’s, Yager’s, Dubois & Prade’s, DSmH), PCR5,
TCN and SAC). The goal was to examine their advantages and milestones and to improve
association results. This work confirms the benefits of attribute utilization and shows some
hidden drawbacks, when the sources of information remain in high conflict, especially in case
of using Dempster’s rule of combination. In clutter-free environment with maximum of target
detection probability and very good classifier quality, the results, according to the performance
criteria, obtained via PCR5 rule outperform the corresponding results obtained by using all
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Figure 12.5: Average variation of Pignistic Entropy in tracks’ attribute histories

the other combination rules tested. When tracking conditions decrease (presence of clutter,
missed target detections with lower classifier quality), the PCR5 fusion rule still provides the
best performances with respect to other rules tested for our new GDA-MTT algorithm. This
work reveals also the real difficulty to define and to choose an unique or a multiple performance
criteria for the fair evaluation of different fusion rules. Actually the choice of the fusion rule is
in practice highly conditioned by the performance criteria that the system designer considers
as the most important for his application. More efforts on multicriteria-based methods for per-
formance evaluation are under investigations. Further works on GDA-MTT would be to define
some precise benchmark for difficult multitarget tracking and classification scenarios and to see
if the recent MITM approach (i.e. RMIMM coupled with MAJPDA) can be improved by our
new generalized data association method.
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