The differences between new elementary particle physics and the Standard Model of particle physics

Yibing Qiu
yibing.qiu@hotmail.com

Abstract: giving the main difference between new particle physics with the Standard Model of particle physics

Main viewpoints and conclusions:
The main difference between new elementary particle physics with the Standard Model of particle physics is:

In new elementary particle physics that beyond the Standard Model, there are no exist quark definition and quark particles system; but, in the Standard Model of particle physics, there are exist quark definition and quark particles system. \[1\] \[2\]

Besides, the bump which at an energy of 750 gigaelectronvolts (GeV), if it exist, it is just only a X-lepton or called X-meson that different from π, μ, τ, k, ρ, ω, ϕ and the others that have been known; another situation, it is a X-baryon. \[3\] \[4\]

References
[1] Quarks take wrong turns
[2] A. O. Barut, Stable Particles as Building Blocks of Matter,
ICTP Preprint IC/79/40 (April, 1979)
[3] Scientists say hoped-for physics particle was just a blip (Update 2)
[4] Redefining Leptons (or called Mesons) and Baryons
http://rxiv.org/abs/1503.0151

YuQuan Road, Zhao Feng Yuan Section, Feng Tai District, Beijing, CHINA