
 
 

   
Ontological-Phase Topological Field Theory 

 
 
 

We thank Newton for inspiring strict adherence to hypotheses non-fingo1, 
and claim reasonable a posteriori surety in positing the need for an 
Ontological-Phase Topological Field Theory (OPTFT) as the final step in 
describing the remaining requirements for bulk UQC. Let’s surmise with 
little doubt that a radical new theory needs to be correlated with the 
looming 3rd regime of Unified Field Mechanics (UFM). If the author 
knows one thing for sure, it is that gravity is not quantized! The physics 
community is so invested in quantizing the gravitational force that it could 
still be years away from this inevitable conclusion. There is still a serious 
conundrum to be dealt with however; discovery of the complex Manifold 
of Uncertainty (MOU), the associated ‘semi-quantum limit’ and the fact 
of a duality between Newton’s and Einstein’s gravity, may allow some 
sort of wave-particle-like duality with a quantal-like virtual graviton in the 
semi-quantum limit. Why mention the gravitational field? Relativistic 
information processing (RIP) introduces gravitational effects in the 
‘parallel transport’ aspects of topological switching in branes. There are A 
and B type topological string theories, and a related Topological M-
Theory with mirror symmetry, that are somewhat interesting especially 
since they allow sufficient dimensionality with Calabi-Yau mirror 
symmetry perceived as essential elements for developing a UFM. But a 
distinction between these theories and the ontology of an energyless 
topological switching of information (Shannon related) through 
topological charge in brane dynamics, perhaps defined in a manner 
making correspondence to a higher dimensional (HD) de-Broglie-Bohm 
super-quantum potential synonymous with a 'Force of coherence' of the 
unified field is of interest. Thus the term 'OPTFT’ has been chosen to 
                                                             
1In B. Motte's 1729 English trans. of Newton’s essay ‘General Scholium’, 2nd (1713) 
edition of Principia, phrase appeared as "I do not frame hypotheses". This translation was 
objected to by Koyre in 1965, who pointed out that 'fingo' means 'feign', not 'frame' [1].  
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address this issue as best as the Zeitgeist is able to conceive at the time of 
writing… 
 

It is possible to make ‘intelligent guesses and conjectures – Atiyah [2]. 
 
 
12.1 Abductive a Priori a Posteriori Tautology 
 

Not all who wander are lost. - J. R. R. Tolkien 
 

Reality leaves a lot to the imagination. - John Lennon 
 

And those who were seen dancing were thought to be insane by those who could not hear 
the music – Friedrich Nietzche. 

 This is among the most challenging chapters of the volume for the author, 
the conception of which wasn’t even in the list of topics when the book 
was first conceived in 2014; and not knowing sufficient Group Theory 
limits current enfolding. I didn’t suspect there would be much to say about 
Anyon – quasi-particle – quantum Hall TQC [3] because it was perceived 
as an LD ‘Toy Model’ of the HD UFM UQC architecture proposed to take 
its place. My expertise at the time on TQFT and TQC was sparse such that 
quite a can of worms was opened into my world view in bringing myself 
sufficiently up to speed with study and tad of tutoring given graciously by 
a world-renowned topologist. 

The necessity of r-qubits (relativistic qubits) had already been 
embraced since first hearing of them at Physcomp96 [4]; and again in the 
course of getting up to speed, discovered that a corner of the QC R&D 
community finally began a discussion of their utility for modeling 
relativistic quantum computing (RIP) with a version of r-qubits [5-7]. 

I felt that attempting to develop a relativistic-TQFT was not a correct 
nomenclatural framework for both mathematical and physical reasons. 
Most acutely that the universe is not fundamentally quantum (anymore) 
and that gravitation, unlike the other three known phenomenological 
fields, is not quantized. The hearty belief in a quantum gravity persists 
only because of a herd mentality confounded by the current belief that 
fundamental reality is indeed quantum. 

Most likely, the imminent age of discovery will be described 
topologically. Field theory has evolved from classical field theory to the 
current 2nd regime modes of QFT, RQFT and TQFT. It is proposed that 
the 3rd regime of reality, Unified Field Mechanics (UFM) will be described 
by an Ontological-Phase Topological Field Theory (OPTFT). In terms of 
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the nature of reality, quantum information processing and the 
measurement problem, there has been a recent introduction of relativistic 
parameters including relativistic r-qubits and not just an Amplituhedron 
but more saliently a dual-Amplituhedron replacing spacetime, all bringing 
into question the historically fundamental basis of and need to be restricted 
to ‘locality and unitarity’. 

We briefly review this dilemma in terms of Bell’s inequalities, the no-
cloning theorem and discuss correspondence to the epistemic view of the 
Copenhagen Interpretation versus the ontic consideration of objective 
realism and as merged by W. Zurek’s epi-ontic blend of quantum 
redundancy in quantum Darwinism [8-10]. Finally, we delve into the UFM 
ontological-phase topology requiring a new set of topological 
transformations beyond the Galilean, Lorentz-Poincairé.  

A radical paradigm shift is needed to incorporate the new 3rd regime of 
Unified Field Mechanics (UFM), which appears to be inherently 
topological, suggesting extensions of current theory are required. If I was 
M. Atiya’s clone, I would write a seminal introduction to an extended 
topological field theory as he did in 1986 [11]. UFM does not imply a 5th 
force, is not quantized, but entails an ontological mediation of information 
by a ‘force of coherence’ transferring information (by a form of 
topological charge) in a Shannon sense in the geometric topology of 
branes. This process, as we continue to mention, is an energyless process 
called ‘topological switching’ utilizing ‘topological charge’ [12-14].   
 
 12.2. The Phasor (Phase Vector) Complex Probability Amplitude 
 As the first step in trying to figure out how to develop a new concept of 
Ontological-phase we wish to adapt the phasor or phase vector concept as 
a precursor for describing ontological topological phase. In general, a 
phasor is a complex number for a sinusoidal (  rotation) function with 
Amplitude A, angular frequency    and initial phase  , which are all 
time invariant. The complex constant is the phasor [15].    Euler’s formula allows sinusoids to be represented as the sum of two 
complex-valued functions: 
 

       cos ,2
i t i te eA t A                            (12.1) 

 
or as the real part of one of the functions: 
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        cos Re Re .i t i i tA t A e Ae e                (12.2) 
 

The function  i tA e    is the analytic representation of  cos .A t    
Multiplication of the phasor i i tAe e   by a complex constant, iBe  , 
produces another phasor that changes the amplitude and phase of the 
underlying sinusoid: 
 

       
  

Re Re
cos .

ii i i t i tAe Be e ABe e
AB t

    

  
   

  
         (12.3) 

 

  
Fig. 12.1 Top sine waves - Phase transform in the complex plane. Bottom, can also be 
thought of as 2D rotation of the reference circle, and 1D sliding point on the line segment, 
helping us ponder the 2D nature of anyon braid topology. Thus elements of the figure can 
be considered in 1D, 2D and 3D. 
 

When function  i tA e    is depicted in the complex plane (Fig. 12.1), 
the vector formed by the imaginary and real parts rotates around the origin. 
A is the magnitude, i is the imaginary unit 2 1i   , one cycle is completed 
every 2 /   seconds, and   is the angle formed with the real axis at 

2 / ,t n     for integer values of n [16].    
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Fig. 12.2 Phasor diagram of three waves in perfect destructive interference. 
 This type of addition occurs when sinusoids interfere with each other 
constructively or destructively. Three identical sinusoids with a specific 
phase difference between them may perfectly cancel. To illustrate, we take 
three vectors of equal length placed head to tail so that the last head 
matches up with the first tail forming an equilateral triangle with the angle 
between each phasor being 120° (2π/3 radians), or one third of a 
wavelength / 3 . Thus the phase difference between each wave is 120°, 
 

cos( ) cos( 2 / 3) cos( 2 / 3) 0.t t t                (12.4) 
 

In the example of three waves, the phase difference between the first 
and the last wave is 240o, In the limit of many waves, the phasors must 
form a circle for destructive interference, so that the first phasor is nearly 
parallel with the last. This means that for many sources, destructive 
interference happens when the first and last wave differ by 360o, a full 
wavelength, [16].  
 
12.2.1 Complex Phase Factor  
For any complex number written in polar form, such as ,ire   the phase 
factor is the complex exponential factor, .ie   As such, the term ‘phase 
factor’ is related more generally to the term phasor, which may have any 
magnitude (i.e., not necessarily part of the circle group). The phase factor 
is a unit complex number of absolute value 1 as commonly used in 
quantum mechanics. 

The variable   is usually referred to as the phase. Multiplying the 
equation for a plane wave  ei k r tA   by a phase factor shifts the phase of 
the wave by : 
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    .i k r t i k r tie Ae Ae                                    (12.5) 

 
In quantum mechanics, a phase factor is a complex coefficient ie   that 
multiplies a ket  or bra  . It does not, in itself, have any physical 
meaning in the standard formulation of QM, since the introduction of a 
phase factor does not change the expectation values of a Hermitian 
operator. That is, the values of A    and i ie Ae     are the 
same [17]. 

However, differences in phase factors between two interacting 
quantum states can be measurable under certain conditions such as 
in Berry phase, which has important consequences. The argument for a 
complex number z = x + iy, denoted arg z, is defined as: 
 
 Geometrically, in the complex plane, as the angle from the positive 

real axis to the vector representing z. The numeric value given by the 
angle in radians is positive if measured counterclockwise. 

 Algebraically, the argument is defined as any real quantity   such that cos sin iz r i re      for some positive real r (Euler's 
formula). The quantity r is the modulus of z, as z : 2 2r x y  . 
 

  
Fig. 12.3. Left-Right phase argument.  
Use of the terms amplitude for the modulus and phase for the argument 

are sometimes used equivalently. Under both definitions, it can be seen 
that the argument of any (non-zero) complex number has many possible 
values: firstly, as a geometrical angle, whole circle rotations do not change 
the point, so angles differing by an integer multiple of 2 radians are the 
same. Similarly, from the periodicity of sin and cos, the second definition 
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also has this property.  

An N-particle system can be represented in non-relativistic quantum 
mechanics by a wavefunction,  1 2, ,... nx x x , where each xi is a point in 
3D space. A classical phase space contains a real-valued function in 6N 
dimensions (each particle contributes 3-spatial coordinates and 3-
momenta. Quantum phase space involves a complex-valued function on a 
3N dimensional space. Position and momenta are represented by operators 
that do not commute, and lives in the mathematical structure of a Hilbert 
space. Aside from these differences, the analogy holds. 

In physics, this sort of addition occurs when sinusoids interfere with 
each other, constructively or destructively. The static vector concept 
provides useful insight into questions like: What phase difference would 
be required between three identical sinusoids for perfect cancellation? In 
this case, simply imagine taking three vectors of equal length and placing 
them head to tail such that the last head matches up with the first tail. 
Clearly, the shape which satisfies these conditions is an equilateral 
triangle, so the angle between each phasor to the next is 120° ( 2 / 3
radians), or one third of a wavelength / 3 . So the phase difference 
between each wave must also be 120°. In other words, what this shows is:   cos cos 2 / 3t t      cos 2 / 3 0.t    
   
12.2.2 Geometric Phase - Berry Phase 
 
A Berry phase difference acquired over the course of a cycle, when a 
system is subjected to cyclic adiabatic processes resulting from the 
geometrical properties of the parameter space of the Hamiltonian [18].  
This phenomenon was first discovered in 1956, [19] and rediscovered in 
1984 [20]. It can be seen in the Aharonov-Bohm effect and in the conical 
intersection. 
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Fig. 12.4. Conical intersection of two potential energy surfaces.    

A conical intersection of two potential energy surfaces is the set of 
geometrical points where the two potential energy surfaces are degenerate 
(intersect) and the non-adiabatic couplings between these two states are 
non-vanishing. For the Aharonov–Bohm effect, the adiabatic parameter is 
the magnetic field enclosed by two interference paths, and is cyclic 
because the two paths form a loop. For a conical intersection, the adiabatic 
parameters are molecular coordinates. In addition to quantum mechanics 
it can occur whenever there are at least two parameters describing a wave 
in the vicinity of a singularity or topological hole.  

In a quantum system at the nth eigenstate, if adiabatic (adapts to 
gradually changing external conditions; but for rapidly varying conditions 
there is insufficient time, so the spatial probability density remains 
unchanged) evolution of the Hamiltonian evolves the system such that it 
remains in the nth eigenstate, while also obtaining a phase factor. The phase 
obtained has a contribution from the state's time evolution and another 
from the variation of the eigenstate with the changing Hamiltonian.  

The second term corresponds to the Berry phase which for non-cyclical 
variations of the Hamiltonian can be made to vanish by a different choice 
of the phase associated with the eigenstates of the Hamiltonian at each 
point in the evolution. However, if the variation is cyclical, the Berry phase 
cannot be cancelled, it is invariant and becomes an observable property of 
the system. From the Schrödinger equation the Berry phase   is: 

 
    , ,RCC i n t n t dR                           (12.6) 

 
where R parametrizes the cyclic adiabatic process. It follows a closed 
path C in the appropriate parameter space. Geometric phase along the 
closed path C can also be calculated by integrating the Berry 
curvature over surface enclosed by C [21].  

One of the simplest examples of geometric phase is the Foucault 
pendulum [22]. The pendulum precess when it is taken around a general 
path C. For transport along the equator, the pendulum does not precess. 
But if C is made up of geodesic segments, precession arises from the 
angles where the segments of the geodesics meet; the total precession is 
equal to the net deficit angle, which equals the solid angle enclosed by C 
modulo 2 . We can approximate any loop by a sequence of geodesic 
segments, from which the most general result is that the net precession is 
equal to the enclosed solid angle. Since there are no inertial forces on the 
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pendulum precess, precession, relative to the direction of motion along the 
path, is entirely due to the turning of the path. Thus the orientation of the 
pendulum undergoes parallel transport [22]. 
 
12.2.3 The Toric Code  
The toric code introduced by Alexei Kitaev, is named from its periodic 
boundary conditions having it the shape of a torus allowing the model to 
have translational invariance useful in TQC. Putative experimental 
realization requires open boundary conditions, allowing the system to be 
embedded on a 2D surface. Toric code and its generalized surface codes 
provides a basis for anyonic computation by braiding defects. The unique 
nature of topological codes, like Kitaev’s toric code, is that stabilizer 
violations can be interpreted as quasiparticles [23]. 
 Kitaev defines the Toric Code on a periodic 2D lattice, usually 
the square lattice, with a spin-1/2 degree of freedom located on each edge. 
Stabilizer operators are defined on the spins around each vertex v and 
plaquette p of the lattice: 
 

 , .x
v i p i

i v i p
A B  

 
                         (12.7) 

 
Where i v  denotes edges touching the vertex v, and i p  denotes the 
edges surrounding the plaquette p. The stabilizer space of the code is 
where all stabilizers act trivially,     
 

 ,  ,  ,  ,v pA v B p                (12.8) 
 
for any state  . For the toric code, this is a 4D space, so it can store 
two qubits. The occurrence of errors moves the state out of the stabilizer 
space, resulting in vertices and plaquettes for which the above condition 
does not hold. The positions of these violations is the ‘syndrome of the 
code’, and is used for error correction. The unique nature of topological 
toric codes, is that stabilizer violations can be interpreted as quasiparticles. 
Specifically, if the code is in a state  such that, ,vA     a 
quasiparticle called an e anyon exists on the vertex v [23,24]. 
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Another method introduces a distance truncature at the antipode of 

each set of points. In Fig. 12.5, the square is a flat Euclidean torus with 
null curvature everywhere [25].  

 
Fig. 12.5. a) Square Euclidean torus.    

   
Fig. 12.6. The P torus point owns three antipodal points (A,B,C,D), (M,N) and (H,K). 
 From a geometrical point of view, the points A,B,C,D must be 
identified to an antipode of point P on the torus. For the Euclidean square 
torus, straight lines are geodesics of the torus. The gravitational action of 
a mass located at the antipodal point (A,B,C,D) on the point P is zero, 
which is the same for a mass located in (H,K) or (M,N) [25]. See fig. 12.6 
(Right). The corresponding geodesic path lengths are basically different 
(Fig. 12.5) as shown in (12.9): 
 

 
2PA = PB = PC = PD =  L2

PM = PN = PH = PK = 2
L                   (12.9) 
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Note that on a torus there are an infinite number of geodesics joining two 
given points, one being the shortest. When computing a corresponding 
gravitational interaction, both lengths must be considered, d Rd     2R   [25]. 
12.3. Transitioning from TQFT to OPTFT 
 Topological quantum field theories (TQFT) were originally created to 
avoid the infinities plaguing quantum field theory [11,26]. Atiyah [11] 
initially to an axiomatic approach to TQFT, which has been realized in 
low dimensions and the primary method for modeling anyonic QC. The 
motivation for topological field theories stems from modern physical 
theories being defined by invariance under certain group actions like 
gauge groups in particle physics, diffeomorphism groups in general 
relativity, or unitary operator groups in quantum mechanics. In topological 
field theory, the concern is topological invariants, which are objects 
computed from a topological space (smooth manifold) without any metric 
[27]. Topological invariance is invariance under the diffeomorphism 
group of the manifold. Important milestones were Thom’s theory of 
cobordism [28], de Rham cohomology, and knot theory. Through theories 
such as the Chern-Weil theory linking differential geometry and algebraic 
topology, abstract formalisms found powerful geometric applications 
which were applied to physics beginning in the 70’s [29] and flourished 
through the work of Witten and Atiyah [30]. 

Fundamental strings map out 2D surfaces. The N = (1,1) sigma model 
quantum field theory is defined on each surface. It consists of maps from 
the surface to a supermanifold interpreted physically as spacetime and 
each map is interpreted as the embedding of the string in spacetime. Only 
certain spacetimes admit topological strings. Classically one must choose 
a spacetime that allows an additional pair of supersymmetries, so in fact 
the theory is an N = (2,2) sigma model. This is the case for a Kähler 
manifold where the H-flux is identically equal to zero [30]. 

Ordinary strings on special backgrounds are never topological. To 
make these strings topological, one needs to modify the sigma model by a 
procedure called a topological twist invented by Witten in 1988 [31]. The 
central observation is that these theories have two U(1) symmetries known 
as R-symmetries, where the Lorentz symmetry may be modified by 
mixing rotations and R-symmetries. One may use either of the two R-
symmetries, leading to two different theories, called the A model and the 
B model. After this twist the action of the theory is BRST exact, and as a 
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result the theory has no dynamics, instead all observables depend on the 
topology of a configuration [26].  

Twisting is not possible for anomalies. In the Kähler case where H = 0 
the twist leading to the A-model is always possible, but that leading to the 
B-model is only possible when the first Chern class of the spacetime 
vanishes, implying that the spacetime is Calabi-Yau. More generally N = 
(2,2) theories have two complex structures and the B model exists when 
the first Chern classes of associated bundles sum to zero, whereas the A 
model exists when the difference of the Chern classes is zero. In the Kähler 
case the two complex structures are the same and so the difference is 
always zero, which is why the A model always exists [31]. 
 
12.3.1 The A and B-Models of Topological Field Theory 
 The topological A-model comes with a target space which is a real-6D 
generalized Kähler spacetime describing two objects. There are 
fundamental strings, which wrap two real-dimensional holomorphic 
curves. Amplitudes for the scattering of these strings depend only on the 
Kähler form of the spacetime, and not on the complex structure [30].  

The B-model also contains fundamental strings, but their scattering 
amplitudes depend entirely upon the complex structure and are 
independent of the Kähler structure. In particular, they are insensitive to 
worldsheet instanton effects and so can often be calculated exactly. Mirror 
symmetry then relates them to A-model amplitudes, allowing one to 
compute Gromov–Witten invariants. The B-model also comes with D(-1), 
D1, D3 and D5-branes, which wrap holomorphic 0, 2, 4 and 6-
submanifolds respectively. The 6-submanifold is a connected component 
of the spacetime. The theory on a D5-brane is known as holomorphic 
Chern-Simons theory [29].  

 
12.3.2. Dualities Between Topological String Theories (TSTs) 
 A number of dualities relate the above theories. The A-model and B-model 
on two mirror manifolds are related by mirror symmetry, which has been 
described as a T-duality on a 3-torus. The A-model and B-model on the 
same manifold are thought to be related by S-duality, implying the 
existence of several new branes, called NS branes by analogy with 
the NS5-brane, which wrap the same cycles as the original branes but in 
the opposite theory. Also a combination of the A-model and a sum of the 
B-model and its conjugate are related to topological M-theory by a kind 
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of dimensional reduction. Here the degrees of freedom of the A-model and 
the B-models appear to not be simultaneously observable, but have a 
relation similar to that between position and momentum in quantum 
mechanics [26,30]. 
 
12.3.3. The Holomorphic Anomaly 
 The sum of the B-model and its conjugate appears in the above duality 
because it is the theory whose low energy effective action is expected to 
be described by Hitchin's formalism. This is because the B-model suffers 
from a holomorphic anomaly, which states that the dependence on 
complex quantities, while classically holomorphic, receives non-
holomorphic quantum corrections. In Quantum Background Independent 
String Theory, Witten argued that this structure is analogous to a structure 
that one finds geometrically quantizing the space of complex structures. 
Once this space has been quantized, only half of the dimensions 
simultaneously commute and so the number of degrees of freedom has 
been halved. This halving depends on an arbitrary choice, called 
a polarization. The conjugate model contains the missing degrees of 
freedom, and so by tensoring the B-model and its conjugate one reobtains 
all of the missing degrees of freedom and also eliminates the dependence 
on the arbitrary choice of polarization [23,24,26,30]. 
 
 
12.4 Topological Vacuum Bubbles by Anyon Braiding  
According to a basic rule of fermionic and bosonic many-body physics, 
known as the linked cluster theorem, physical observables are not affected 
by vacuum bubbles, which represent virtual particles created from vacuum 
and self-annihilating without interacting with real particles. Here we show 
that this conventional knowledge must be revised for anyons, 
quasiparticles that obey fractional exchange statistics intermediate 
between fermions and bosons. We find that a certain class of vacuum 
bubbles of Abelian anyons does affect physical observables. They 
represent virtually excited anyons that wind around real anyonic 
excitations. These topological bubbles result in a temperature-dependent 
phase shift of Fabry-Perot interference patterns in the fractional quantum 
Hall regime accessible in current experiments, thus providing a tool for 
direct and unambiguous observation of elusive fractional statistics [32]. 
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When two identical particles adiabatically exchange positions ri = 1,2, their final state  , to dynamical phase, relates to the initial state through 

an exchange statistics phase   , 
 

    2 1 1 2r , r r , r ,ie                               (12.10) 
with 0( )   [33].  

In many-body quantum theory [33], Feynman diagrams are used to 
compute the expectation value of observables. This approach invokes 
vacuum bubble diagrams, which describe virtual particles excited from 
vacuum and self-annihilating without interacting with real particles. 
According to the linked cluster theorem [33], each diagram having 
vacuum bubbles comes with a partner diagram of the same magnitude but 
of opposite sign that it is exactly cancelled by. Consequently, vacuum 
bubbles do not contribute to physical observables. 
 This common wisdom must be revised for anyons because a certain 
class of vacuum bubbles of Abelian anyons does affect observables. These 
virtual particles, called topological vacuum bubbles, wind around a real 
anyonic excitation, gaining the braiding phase 2 v  [32]. 

Han’s team proposes an experimental procedure for detecting them and 
v   , where v  is the anyon phase and   the interference phase shift 

[32]. For an interference a1a2 between processes a1 and a2 for propagation 
of a real particle, in a1, a virtual particle-hole pair is excited then self-
annihilates after the virtual particle winds around the real particle, forming 
a vacuum bubble, which is not excited in a2. The winding results in a 
braiding phase 2 v  and an Aharonov–Bohm phase  02 /   from the 
magnetic flux   enclosed by the winding path, contributing to the 
interference signal as    0exp 2 / 2e i v    ; 0 /h e    as the 
anyon flux quantum [32]. 

The limiting cases of bosons (v = 0) and fermions (v = 1) imply that 
this bubble diagram appears together with, and is cancelled by, a partner 
diagram. The partner diagram has a bubble not encircling the real particle 
and involves only  02 / .    The two diagrams (and complex 
conjugates) yield 
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0 02 / 2 2 /

0

Interference signal  Re
                              = sin sin 2 / .

i v ie e
v v

  

  

     



    
   

       (12.11) 

 
For bosons and fermions, the two diagrams fully cancel each other with  sin 0v   in agreement with the linked cluster theorem; thus, the signal 
disappears. By contrast, for anyons they cancel only partially, producing 
non-vanishing interference in an observable, and are topological as the 
braiding phase is involved [32]. 

The astute reader will begin to notice, that the anyon braid topology 
begins to overlap with the UFM OPTFT. The question will be whether the 
cryogenic TQC will be built as a ‘proof of concept’ or a ‘leap-frog’ will 
occur to the table top room temperature UFM model. If the utility of the 
Aharonov-Bohm effect remains a key element of ‘Topological vacuum 
bubbles by anyon braiding’ interferometry; it is easy to add Aharonov-
Bohm effect parameters to the OPTF dynamics. 
 
 
12.5 Topological Switching – Key to Ontological-Phase  
The 2-state formalism currently forms the basis of QC. Qubits, are 2-state 
systems. Any QC operation is a unitary operation that rotates the state 
vector on the Bloch sphere. To move from Hilbert space to ontological-
phase space we must begin to define what we mean by topological 
switching [12-14. We begin with a number of ways of looking at the 
ambiguous Necker cube [34]. 
 

  
Fig. 12.7. Ambiguous Necker cube, left, mirror image, center and perceived shift 
between the two states in 4D. 
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Fig. 12.8. Two states of the Necker cube. A physically real description is needed.  

      
Fig. 12.9. A first step towards physicality might be distinguishing the vertices.  
 Quaternions have the ability to represent rotations of 3D space. If we 
represent 3-space, 3  as the set of pure quaternions of the form 

ai bj ck    with a, b, c real numbers, then g is a unit quaternion 
mapping 3 3:   defined by the equation 1( ) g g    describes 
a 3-space rotation by angle   around axis   when 
 

 cos( / 2) sin( / 2) .g                       (12.12) 
 
In this manner,   is a unit length quaternion giving a direction to a vector 
in3-space, a rotation is specified by an angle   about an axis U, which in 
the case below is in the positive direction [35]. 
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Fig. 12.10. Denoting two 90o rotations R1 and R2, we write R3 = R2R1 for the rotation 
obtained by 1st performing R1 and then R2. R3 fixes the corners B and H; Thus R3 is a 120o 
rotation about the diagonal axis.  Thus, following Kauffman [35], 
 

    
 

( /4) ( /4) 2 2 2 2
2 2 2 2

1 1                   = 1 1 1 .2 2
1 1 3                   = 1 .2 2 2 3

j ke e j k

j k j k jk
i j ki j k

            
     

         

 

                 

   / 3 2 /3 /2( /4) ( /4)

odiagonal axis     120 .
                                      
                       

i j kj ke e e       
   

  These quaternion rotations can be considered phase changes under 
certain conditions; but they do not correspond to the ontological phase we 
are looking for because Euclidean geometry has no natural inherent 
perspective. It appears we need a duo-morphic projection perhaps 
involving Berry phase because the ambiguous vertices of the Necker cube 
are not distinguished in Kauffman’s quaternion rotation system [35]. 
 To clarify how projective transformations lose orientable information, 
rotating a triangle in a plane is used as an illustration [36].   



18                                         Universal Quantum Computing 

  
Fig. 12.11. Removing ambiguity from a projected rotation, with > denoting order of 
sequence occurrence – to the left on the projective line. Bold letters are the front range of 
projective mapping. Fig. redrawn from [36].  The rotation sequences in Fig. 12.11 are I,II,III for clockwise and 
I,III,II for counter-clockwise. According to Shaw the direction of rotation 
reverses if the back and front ranges are interchanged. This is denoted by 
the connecting lines in the boxes below the rotation triangles. Bold letters 
mark the front range; this system is able to preserve orientation 
information under projected rotation.  
 The 3D wire-frame Necker cube can be projected onto a 2D surface, 
collapsing the cubes six faces into a complex of one to seven coplanar 
polygons depending on orientation of the cube.  
 

  
Fig. 12.12 Contrasting nonoriented - oriented projective geometries. Redrawn from [37].  
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Figure 12.12 illustrates three different forms of projection.  
  I II-Top  III-Top:    no occlusion information 

 I II-Middle  III-Middle and III-Bottom:   occlusion information 
is specified ambiguously  I II-Bottom  III-Bottom:   occlusion information is specified 
unambiguously. 

 
The Necker cube, like the Möbius strip is an ambiguous figure because of 
the problem of projective mapping. In ordinary projective space, the 
Möbius strip and Necker cube, are one-sided (Fig. 12.12). The spherical 
model of this geometry represents the fact that the projections of a point 
on the back of the sphere and of a point on its front both have the same 
image in the Euclidean (projective) plane. All of the projected points, 
regardless of the hemisphere to which they belong, cover the projective 
plane in the usual way without any designation of where they originated. 
The loss of orientation is due to this failure of the projective mapping to 
preserve the distinction between the front and back range, collapsing both 
into positive values of the dimension of depth w. This loss of orientation 
is represented by the fact that relationships (e.g., the arrows) invert when 
the projective angle passes through the points at infinity [36]. 
 To keep the front and back ranges distinguished, traditional compu-
tational geometries use the line at infinity as a reference; but this move is 
not a real solution to the orientation problem in projective geometry 
because it is tantamount to a return to Euclidean geometry which has no 
inherent natural perspective. 
 

  
Fig. 12.13 Duo-morphic oriented projections (+W, -W) yield a double covering of the 
projective plane, P.    
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 To distinguish front and back ambiguous vertices of the Necker cube 
is a problem of orientation. Oriented projective geometry introduces a 
methodology for distinguishing the ambiguous vertices of the Necker cube 
[36]. Shaw [37] assigns a dual range, +W and -W to represent front and 
rear ranges of a sphere.  
 

  
Fig. 12.14. Ambiguity needs a method of labeling for clarity. 

  
Fig. 12.15. Visual test of stereoscopic construction of a Necker cube.  
Figure 12.15 separates the ambiguous Necker cube into its component 
perspectives. Although what we are about to illustrate is usually 
considered a mental construct, we use it here to illustrate what we mean 
by ontological phase and an ontological phase transformation. Focus on 
the ‘X’ halfway between the 2D L-R Necker perspectives; relax one’s eyes 
and allow them to lose focus and cross. Soon, a 3rd image appears between 
the two printed L-R images fusing the original perspective into one 
apparent 3D image, confirmed by noticing the labels ‘a’ and ‘b’ are now 
superposed. This stereoscopic condition is the scenario we want to utilize 
to define ontological-phase.   
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Fig.12.16. Topological Invariance must be included in any phase labeling. Figure 
redrawn from [25]. Masahide & Satoh generalize the class of roll-spun knots for 2-knot 
theory and show how to calculate the quandle cocycle invariant for any 
roll-spun knot [38]. For the case  1 2

4 , 2, 1X S t t t t      , the 
element   111 0 1w t t       satisfies 4id ;w S  such that we have   
 

1 10 110 1 1 0
1 1 0 0 1

0 1 1
1 1 1.

t tt t

t t t
t t t t t

        


  
   
   
   

(12.13) 

 
Since  ind 0,w   it holds that  0 4 .w G S  Figure 12.17 shows that w2 
= 1 in G0(S4), and that w is the generator of  0 4 2.G S     
 



22                                         Universal Quantum Computing 

  
Fig. 12.17. Deform-spun knot tangle diagram. Redrawn from [38]. 
  The spun knot is explored as a possible component topological move 
for ontological-phase transitions. When parallel transport creates a deficit 
angle in brane raising and lowering dynamics, in addition to Reidemeister 
moves, rotations, reflections and any other topological moves, spun knot 
components may add another type of phase transition with lattice charge.  
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Fig. 12.18. Rolling spun knots. The infusion of topological charge as a UFM ‘force of 
coherence’ driving evolution throughout the multidimensional brane hierarchy can allow 
multiple types of moves to occur at multiple levels simultaneously. 
 An important feature of TQFTs is that they do not presume a fixed 
topology for space or spacetime. In other words, when dealing with an n-
dimensional TQFT, one is free to choose any (n - 1)-dimensional manifold 
to represent space at a given time. Moreover, given two such manifolds, 
say S and S , one is free to choose any nD manifold M to represent the 
portion of spacetime between S  and S . Mathematicians call M a 
`cobordism' from S  to S . We write :M S S  , because we may think 
of M as the process of time passing from the moment S to the moment .S   

 

  
Fig. 12.18. A basic cobordism.  For example, in Fig. 12.18 we depict a 2D manifold M going from a 
1D manifold S (a pair of circles) to a 1D manifold S  (single circle). 
Crudely speaking, M represents a process in which two separate spaces 
collide to form a single one! This may seem outré, but currently physicists 
are quite willing to speculate about processes in which the topology of 
space changes with the passage of time [39].  
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Fig. 12.19. Identity cobordism.  
  There are various important operations one can perform on 
cobordisms, but we only describe two. First, we may `compose' two 
cobordisms :M S S   and :M S S  , obtaining a cobordism 

:M M S S  , as illustrated in Fig. 12.20. The idea here is that the 
passage of time corresponding to M followed by the passage of time 
corresponding to M   equals the passage of time corresponding to M M
. This is analogous to the familiar idea that waiting t seconds followed by 
waiting t   seconds is the same as waiting t t  seconds. The big 
difference is that in topological quantum field theory we cannot measure 
time in seconds, because there is no background metric available to let us 
count the passage of time! We can only keep track of topology change. 
Just as ordinary addition is associative, composition of cobordisms 
satisfies the associative law:  
    .M M M M M M                       (12.16) 
 
However, composition of cobordisms is not commutative. As we shall see, 
this is related to the famous noncommutativity of observables in quantum 
theory [39]. 

Second, for any (n–1)D manifold S representing space, there is a 
cobordism1 :S S S  called the `identity' cobordism, which represents a 
passage of time without topological change. For example, when S is a 
circle, the identity cobordism 1S is a cylinder, as shown in Fig. 12.19 In 
general, the identity cobordism 1S has the property that for any cobordism 
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:M S S   we have 1S M = M, while for any cobordism :M S S   we 

have M1S = M [39].  

  
Fig. 12.20. The Golem, composition of cobordisms designed to handle ontological-phase. 
 These properties say that an identity cobordism is analogous to waiting 0 
seconds: if you wait 0 seconds and then wait t more seconds, or 
wait t seconds and then wait 0 more seconds, this is the same as 
waiting t seconds. 

These operations just formalize of the notion of `the passage of time' 
in a context where the topology of spacetime is arbitrary and there is no 
background metric. Atiyah's axioms relate this notion to quantum theory 
as follows. First, a TQFT must assign a Hilbert space Z(S) to each (n – 1)D 
manifold S. Vectors in this Hilbert space represent possible states of the 
universe given that space is the manifold S. Second, the TQFT must assign 
a linear operator ( ) : ( ) ( )Z M Z S Z S   to each nD cobordism

:M S S  . This operator describes how states change given that the 
portion of spacetime between S  and S  is the manifold M. In other 
words, if space is initially the manifold S  and the state of the universe is , after the passage of time corresponding to M the state of the universe 
will be ( )Z M   [39]. 

In addition, the TQFT must satisfy a list of properties. Let me just 
mention two. First, the TQFT must preserve composition. That is, given 
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cobordisms :M S S   and :M S S   , we must have ( )Z M M   

( ) ( ),Z M Z M  where the right-hand side denotes the composite of the 
operators ( )Z M  and ( )Z M  . Second, it must preserve identities. That is, 
given any manifold S  representing space, we must have ( )(1 ) 1 .S Z SZ    
where the right-hand side denotes the identity operator on the Hilbert 
space Z(S) [39]. 

Both these axioms are eminently reasonable if one ponders them a bit. 
The first says that the passage of time corresponding to the 
cobordism M followed by the passage of time corresponding to M   has 
the same effect on a state as the combined passage of time corresponding 
to M M . The second says that a passage of time in which no topology 
change occurs has no effect at all on the state of the universe. This seems 
paradoxical at first, since it seems we regularly observe things happening 
even in the absence of topology change. However, this paradox is easily 
resolved: a TQFT describes a world quite unlike ours, one without local 
degrees of freedom. In such a world, nothing local happens, so the state of 
the universe can only change when the topology of space itself changes3. 
The most interesting thing about the TQFT axioms is their common formal 
character. Loosely speaking, they all say that a TQFT maps structures in 
differential topology (the study of manifolds) to corresponding structures 
in quantum theory. In coming up with these axioms, Atiyah took 
advantage of a powerful analogy between differential topology and 
quantum theory, summarized in Table 12.1 [39].  

This analogy between differential topology and quantum theory the 
sort of clue we should pursue for a deeper understanding of quantum 
gravity. At first glance, general relativity and quantum theory look very 
different mathematically: one deals with space and spacetime, the other 
with Hilbert spaces and operators. Combining them has always seemed a 
bit like mixing oil and water. But topological quantum field theory 
suggests that perhaps they are not so different after all! Even better, it 
suggests a concrete program of synthesizing the two, which many 
mathematical physicists are currently pursuing. Sometimes this goes by 
the name of `quantum topology' [2,11]. 



27                  Ontological-Phase Topological Field Theory 

  Table 12.1: Analogy between differential topology and quantum theory. 
 
Quantum topology is very technical, as anything involving mathematical 
physicists inevitably becomes. But if we stand back a moment, it should 
be perfectly obvious that differential topology and quantum theory must 
merge if we are to understand background-free quantum field theories. In 
physics that ignores general relativity, we treat space as a background on 
which states of the world are displayed. Similarly, we treat spacetime as a 
background on which the process of change occurs. But these are 
idealizations which we must overcome in a background-free theory. In 
fact, the concepts of `space' and `state' are two aspects of a unified whole, 
and likewise for the concepts of ̀ spacetime' and ̀ process'. It is a challenge, 
not just for mathematical physicists, but also for philosophers, to 
understand this more deeply [39]. 
 We begin to explore various types of crossover inks and moves to start 
cataloguing the variety of moves that maybe applicable to ontological-
phase transitions. 
 

  
Fig. 12.21. Simple crossover links.   
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Fig. 12.22. Crossings for octonion trefoil knots. 
 

  
Fig. 12.23. Reduction schemes for the left- and right-handed trefoil knots. (a) Top: left-
handed trefoil knot; bottom: writhe _  and a Hopf link H , with crossing −1. (b) Top: 
right-handed trefoil knot; bottom: writhe    and a Hopf link H , with crossing +1. The 
two knots are mirror images of one another. Figure adapted from [40]. 
 

  
Fig. 12.24. Reduction schemes for Whitehead links W and W . (a) Top: Whitehead link 
W with crossing +1; bottom: Hopf link H  and the left-handed trefoil knot LT . (b) 
Whitehead link W  with crossing −1; bottom: Hopf link H , and a figure-of-eight knot 

8F . Figure adapted from [40].    
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Thus a true octonion contains three trefoil knots, whereas a split 

octonion may be specified by mixing a pair of quaternion trefoil lines. 
define a tripled Fano plane, three copies of Furey's particle zoo. It 
describes a set of 21 = 3 x 7 (left cyclic) modules over a noncommutative 
ring on eight elements. The ring is given by the upper triangular 2 x 2 
matrices over the field with two elements. Similarly, for right cyclic 
modules [41,42]. 

The quaternions, H are a 4D algebra with basis 1, , ,i j k . To describe 
the product, it is easy to note that: 
 
 1 is the multiplicative identity, 
 , ,i j k  are square roots of -1, 
 we have ,ij k ji k    and all identities obtained from these by 

cyclic permutations of  , , .i j k  
 We can summarize the last rule as a diagram 
 

  
Fig. 12.25. Clockwise and counterclockwise rule for Quaternion cyclicality.  
 In multiplying two elements going clockwise around the circle we get 
the next one: for example, ij k . But when we multiply two going around 
counterclockwise, we get minus the next one: for example, ji k  . We 
can use the same sort of picture to remember how to multiply octonions: 
 

   
Fig. 12.26. The Fano plane and its mirror image.  
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The Fano plane is the finite projective plane of order 2, having the 

smallest possible number of points and lines, 7 each, with 3 points on every 
line and 3 lines through every point. The Fano plane has 7 points and 7 
lines. The 'lines' are the sides of the triangle, its altitudes, and the circle 
containing all the midpoints of the sides. Each pair of distinct points lies 
on a unique line. Each line contains three points, and each of these triples 
has a cyclic ordering shown by the arrows. If ei, ej, ek are cyclically ordered 
in this way then , .i j k j i ke e e e e e    
Together with these rules: 
 
 1 is the multiplicative identity, 
 1 7,...,e e are square roots of -1, 
 
the Fano plane completely describes the algebra structure of the octonions. 
Index-doubling corresponds to rotating the picture a third of a turn. 
Interestingly, The Fano plane is the projective plane over the 2-element 
field 2.  In other words, it consists of lines through the origin in the vector 
space 3

2 . Since every such line contains a single nonzero element, we can 
also think of the Fano plane as consisting of the seven nonzero elements 
of 3

2 . If we think of the origin in 3
2 as corresponding to1 O , we get the 

following picture of the octonions: 
 

  
Fig. 12.27. The octonions for 1 O . 
 

Note that planes through the origin of this 3D vector space (Fig. 12.26) 
give subalgebras of O isomorphic to the quaternions, lines through the 
origin give subalgebras isomorphic to the complex numbers, and the origin 
itself gives a subalgebra isomorphic to the real numbers [39]. 
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 Now we finally arrive at the fundamental geometric topology for 
describing ontological-phase topological field theory. When the 
formalism is next written it will be created by utilizing both topology and 
complex quaternion/octonions Clifford algebra which is especially suited 
to handle the manifold embedding [43]. 
 

  

     
Fig. 12.28. The ‘antennas’ (snowflakes) on a Fano plane (top) represent vertices on the 
circumference of a hexagon or cube (bottom). The center rotates unconnected so position 
1 or 2 can create the front/rear vertices of a Necker cube. b) Antennas 1-6 combine to form 
the outer vertices of a cube/hexagon depending on what dimensional phase the state is in.  
 The Fano snowflake configuration in Fig, 12.28 involutes to form a 2D 
hexagon or vertices of a Euclidean Necker 3-cube. We expect to require a 
dual set of twin Fano-Snowflakes as would be derived from Fig. 12.26 to 
account for all the parameters necessary for ‘the mirror image of the mirror 
image to be causally free of the Euclidean 3-space QED quantum state. 
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Fig. 12.29. Construction to improve Khovanov's seminal work on the categorification of 
the Jones polynomial. Figure adapted form [46].  

Some of the complexity for categorizing the Jones polynomial is shown 
in Fig. 12.29 as it might apply to modeling ontological-phase. 
 
 
12.6 Dual Amplituhedron Geometry and ‘Epiontic’ Realism  
The amplituhedron geometric jewel simplifies particle interaction 
calculations and challenges the notion that space and time are fundamental 
components of reality, advancing a long effort to reformulate quantum 
field theory, the body of laws describing elementary particles and their 
interactions by calculations with formulas thousands of terms long that can 
now be described by computing the volume of its amplituhedron, yielding 
an equivalent one-term expression. The new geometric version of quantum 
field theory could also facilitate the search for a theory of quantum gravity. 
Attempts thus far to incorporate gravity into the laws of physics at the 
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quantum scale have run up against nonsensical infinities and deep 
paradoxes. An amplituhedron type geometry could help by removing two 
deeply rooted principles of physics: locality and unitarity [47]. 

Locality is the notion that particles can interact only from adjoining 
positions in space and time. And unitarity holds that the probabilities of 
all possible outcomes of a quantum mechanical interaction must add up to 
one. The concepts are the central pillars of quantum field theory in its 
original form, but in certain situations involving gravity, both break down, 
suggesting neither is a fundamental aspect of nature. In keeping with this 
idea, the new geometric approach to particle interactions removes locality 
and unitarity from its starting assumptions. The amplituhedron is not built 
out of space-time and probabilities; these properties merely arise as 
consequences of the jewel’s geometry. The usual picture of space and 
time, and particles moving around in them, is only a useful construct [47]. 

Because “we know that ultimately, we need to find a theory that doesn’t 
have” unitarity and locality, Bourjaily said, “it’s a starting point to 
ultimately describing a quantum theory of gravity.” The 1st part of 
Bourjaily’s statement is correct; however, the 2nd part is not. Most 
physicists still consider the quantum regime the basement of reality and 
thus automatically think to progress in unification gravity must be 
quantized. This is not the regime of integration and therefore obviously 
why there is no quantum gravity. But transition to the 3rd regime of UFM 
is confounded ‘epiontics’. Reality acquires a semi-quantum (epi) limit on 
the way to the ontological (ontic) regime of UFM [47,48]. 

The amplituhedron in HD encodes in its volume “scattering 
amplitudes,” which represent the likelihood that a certain set of particles 
will turn into certain other particles upon colliding. The twistor theory at 
the root of it does this kind of simplification. It folds the speed of light into 
the geometry by mapping point particles to their light cones. The point 
becomes an intersection of the sphere of light rays that could radiate from 
it. Then you can do extra stuff like cancelling out the asymmetry of 
universal expansion by mapping the larger future light cone on to the 
smaller past light cone [49]. 

Perhaps often, mathematics corresponds perfectly well to physical 
reality. But maybe now as we move away from a Hilbert space 
representation of qubit processing to a truly physical basis, we might 
surmise ‘No wonder it has been difficult to implement bulk QC’. For 
classical digital computing math itself was sufficient; but as we move to 
relativistic qubits and topological quantum field theory apparently this is 
not the case [50].  
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Jaynes had this to say: 
 
“… our present formalism is not purely epistemological; it is a … mixture 
describing in part realities of Nature, in part incomplete human information about 
Nature … if we cannot separate the subjective and objective aspects of the 
formalism we cannot know what we are talking about … .” [50,51]. 
  

The term epistemic is used to represent – not real, mind of observer, in 
contrast to ontic – real; Zurek coined the term epiontic to merge the two 
philosophies into what he called Quantum Darwinism. Quantum 
Darwinism describes the proliferation, in the environment, of multiple 
records of selected states of a quantum system. It explains how the fragility 
of a state of a single quantum system can lead to the classical robustness 
of states of their correlated multitude; shows how effective ‘wavepacket 
collapse’ arises as a result of proliferation throughout the environment of 
imprints of the states of quantum system; and provides a framework for 
the derivation of Born’s rule, which relates probability of detecting states 
to their amplitude. Taken together, these three advances mark considerable 
progress towards settling the quantum measurement problem [48]. 

From copying to quantum jumps Quantum Darwinism leads to 
appearance, in the environment, of multiple copies of the state of the 
system. However, the no-cloning theorem [52,53] prohibits copying of 
unknown quantum states. If cloning is outlawed, how can redundancy be 
possible? Quick answer is that cloning refers to (unknown) quantum 
states. So, copying of observables evades the theorem. Nevertheless, the 
tension between the prohibition on cloning and the need for copying is 
revealing: It leads to breaking of unitary symmetry implied by the 
superposition principle, accounts for quantum jumps, and suggests origin 
of the “wavepacket collapse”, setting stage for the study of quantum 
origins of probability [50]. 

Alexander's horned sphere is a convoluted, intertwined surface with a 
difficult to define inside and outside that is homeomorphic to a ball, 
meaning that it can be stretched into a ball without being punctured or 
broken or vice versa. Embedded in Euclidean 3-space, it can be 
constructed from a torus (Fig. 12.30) in the following manner: 

 
1. Remove a radial slice of the torus. 
2. Connect a standard punctured torus to each side of the cut, interlinked with 

the torus on the other side. 
3. Repeat steps 1 & 2 on the two tori added in step two ad infinitum. 
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  Fig. 12.30 Torus showing minor and major radii.   
  

  
Fig. 12.31. Alexander’s horned sphere with infinite fractal-like embeddings. With a finite 
number of links, we use it to illustrate the ‘chains’ of the manifold of uncertainty, that can 
be opened only by certain topological moves. Figure adapted form [54].  

Time to peek out of the Schrödinger box with the eyes of Alexander’s 
horned cat… 

 

     
Fig. 12.30. a) Alexander’s horned sphere in the eyes of Schrödinger’s Cat. Is reality 
‘created’ by the mind of the observer? Redrawn from [55]. b) Wheeler’s Self-Referential 
Universe, Does the act of observing the universe create it? 
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States with different topological orders or different patterns of long 

range entanglements cannot change into each other without a phase 
transition. In the case of Alexander’s horned sphere, we believe this 
requires an ontological-phase topological transition. 

The horned sphere, together with its inside, is a topological 3-ball, 
the Alexander horned ball, and so is simply connected; i.e., every loop can 
be shrunk to a point while staying inside. The exterior is not simply 
connected, unlike the exterior of the usual round sphere; a loop linking a 
torus in the above construction cannot be shrunk to a point without 
touching the horned sphere. This shows that the Jordan-Schönflies 
theorem does not hold in three dimensions as Alexander had originally 
thought. Alexander also proved that the theorem does hold in three 
dimensions for piecewise linear/smooth embeddings. This is one of the 
earliest examples where distinction between the topological category of 
manifolds, and the categories of differentiable manifolds, and piecewise 
linear manifolds was noticed. 

Now consider Alexander's horned sphere as an embedding into the 3-
sphere, considered as the one-point compactification of the 3D Euclidean 
space R3. The closure of the non-simply connected domain is called 
the solid Alexander horned sphere. Although the solid horned sphere is 
not a manifold, Bing showed that its double (which is the 3-manifold 
obtained by gluing two copies of the horned sphere together along the 
corresponding points of their boundaries) is in fact the 3-sphere. One can 
consider other gluings of the solid horned sphere to a copy of itself, arising 
from different homeomorphisms of the boundary sphere to itself. This has 
also been shown to be the 3-sphere. The solid Alexander horned sphere is 
an example of a crumpled cube; i.e., a closed complementary domain of 
the embedding of a 2-sphere into the 3-sphere [56]. 
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