A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their Use in Solving "Construction" Problems

Jim Smith
QueLaMateNoTeMate.webs.com email: nitac14b@yahoo.com

June 24, 2016

Abstract

This document is intended to be a convenient collection of explanations and techniques given elsewhere (1 - -3) in the course of solving tangency problems via Geometric Algebra.

Geometric-Algebra Formulas for Plane (2D) Geometry

The Geometric Product, and Relations Derived from It
For any two vectors \boldsymbol{a} and \boldsymbol{b},
$\boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{b} \cdot \boldsymbol{a}$
$b \wedge a=-a \wedge b$
$a b=a \cdot b+a \wedge b$
$b a=b \cdot a+b \wedge a=a \cdot b-a \wedge b$
$a b+b a=2 a \cdot b$
$\boldsymbol{a b}-\boldsymbol{b} \boldsymbol{a}=2 \boldsymbol{a} \wedge \boldsymbol{b}$
$a b=2 a \cdot b+b a$
$\boldsymbol{a b}=2 \boldsymbol{a} \wedge \boldsymbol{b}-\boldsymbol{b} \boldsymbol{a}$

Definitions of Inner and Outer Products (Macdonald A. 2010 p. 101.)
The inner product
The inner product of a j-vector A and a k-vector B is
$A \cdot B=\langle A B\rangle_{k-j}$. Note that if $j>k$, then the inner product doesn't exist.
However, in such a case $B \cdot A=\langle B A\rangle_{j-k}$ does exist.
The outer product
The outer product of a j-vector A and a k-vector B is $A \wedge B=\langle A B\rangle_{k+j}$.

Relations Involving the Outer Product and the Unit Bivector, i.

For any two vectors \boldsymbol{a} and \boldsymbol{b},

```
\(i a=-a i\)
\(a \wedge b=[(a i) \cdot b] i=-[a \cdot(b i)] i=-b \wedge a\)
```


Equality of Multivectors

For any two multivectors \mathcal{M} and \mathcal{N},
$\mathcal{M}=\mathcal{N}$ if and only if for all $k,\langle\mathcal{M}\rangle_{k}=\langle\mathcal{N}\rangle_{k}$.

Formulas Derived from Projections of Vectors and Equality of Multivectors

Any two vectors \boldsymbol{a} and \boldsymbol{b} can be written in the form of "Fourier expansions" with respect to a third vector, \boldsymbol{v} :
$\boldsymbol{a}=(\boldsymbol{a} \cdot \hat{\boldsymbol{v}}) \hat{\boldsymbol{v}}+[\boldsymbol{a} \cdot(\hat{\boldsymbol{v}} \boldsymbol{i})] \hat{\boldsymbol{v}} \boldsymbol{i}$ and $\boldsymbol{b}=(\boldsymbol{b} \cdot \hat{\boldsymbol{v}}) \hat{\boldsymbol{v}}+[\boldsymbol{b} \cdot(\hat{\boldsymbol{v}} \boldsymbol{i})] \hat{\boldsymbol{v}} \boldsymbol{i}$.
Using these expansions,

$$
\boldsymbol{a b}=\{(\boldsymbol{a} \cdot \hat{\boldsymbol{v}}) \hat{\boldsymbol{v}}+[\boldsymbol{a} \cdot(\hat{\boldsymbol{v}} \boldsymbol{i})] \hat{\boldsymbol{v}} \boldsymbol{i}\}\{(\boldsymbol{b} \cdot \hat{\boldsymbol{v}}) \hat{\boldsymbol{v}}+[\boldsymbol{b} \cdot(\hat{\boldsymbol{v}} \boldsymbol{i})] \hat{\boldsymbol{v}} \boldsymbol{i}\}
$$

Equating the scalar parts of both sides of that equation,
$\boldsymbol{a} \cdot \boldsymbol{b}=[\boldsymbol{a} \cdot \hat{\boldsymbol{v}}][\boldsymbol{b} \cdot \hat{\boldsymbol{v}}]+[\boldsymbol{a} \cdot(\hat{\boldsymbol{v}} \boldsymbol{i})][\boldsymbol{b} \cdot(\hat{\boldsymbol{v}} \boldsymbol{i})]$, and
$\boldsymbol{a} \wedge \boldsymbol{b}=\{[\boldsymbol{a} \cdot \hat{\boldsymbol{v}}][\boldsymbol{b} \cdot(\hat{\boldsymbol{v}} \boldsymbol{i})]-[\boldsymbol{a} \cdot(\hat{\boldsymbol{v}} \boldsymbol{i})][\boldsymbol{b} \cdot(\hat{\boldsymbol{v}} \boldsymbol{i})]\} \boldsymbol{i}$.
Also, $a^{2}=[\boldsymbol{a} \cdot \hat{\boldsymbol{v}}]^{2}+[\boldsymbol{a} \cdot(\hat{\boldsymbol{v}} \boldsymbol{i})]^{2}$, and $b^{2}=[\boldsymbol{b} \cdot \hat{\boldsymbol{v}}]^{2}+[\boldsymbol{b} \cdot(\hat{\boldsymbol{v}} \boldsymbol{i})]^{2}$.
Reflections of Vectors, Geometric Products, and Rotation operators For any vector \boldsymbol{a}, the product $\hat{\boldsymbol{v}} \boldsymbol{a} \hat{\boldsymbol{v}}$ is the reflection of \boldsymbol{a} with respect to the direction $\hat{\boldsymbol{v}}$.

For any two vectors \boldsymbol{a} and $\boldsymbol{b}, \hat{\boldsymbol{v}} \boldsymbol{a} \boldsymbol{b} \hat{\boldsymbol{v}}=\boldsymbol{b} \boldsymbol{a}$, and $\boldsymbol{v} \boldsymbol{a} \boldsymbol{b} \boldsymbol{v}=v^{2} \boldsymbol{b} \boldsymbol{a}$. Therefore, $\hat{\boldsymbol{v}} e^{\theta i} \hat{\boldsymbol{v}}=e^{-\theta \boldsymbol{i}}$, and $\boldsymbol{v} e^{\theta i} \boldsymbol{v}=v^{2} e^{-\theta i}$.

A useful relationship that is valid only in plane geometry: $a b c=c b a$. Here is a brief proof:

$$
\begin{aligned}
\boldsymbol{a} b \boldsymbol{c} & =\{\boldsymbol{a} \cdot \boldsymbol{b}+\boldsymbol{a} \wedge \boldsymbol{b}\} \boldsymbol{c} \\
& =\{\boldsymbol{a} \cdot \boldsymbol{b}+[(\boldsymbol{a} \boldsymbol{i}) \cdot \boldsymbol{b}] \boldsymbol{i}\} \boldsymbol{c} \\
& =(\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{c}+[(\boldsymbol{a i}) \cdot \boldsymbol{b}] \boldsymbol{i} \boldsymbol{c} \\
& =\boldsymbol{c}(\boldsymbol{a} \cdot \boldsymbol{b})-\boldsymbol{c}[(\boldsymbol{a} \boldsymbol{i}) \cdot \boldsymbol{b}] \boldsymbol{i} \\
& =\boldsymbol{c}(\boldsymbol{a} \cdot \boldsymbol{b})+\boldsymbol{c}[\boldsymbol{a} \cdot(\boldsymbol{b} \boldsymbol{i})] \boldsymbol{i} \\
& =\boldsymbol{c}(\boldsymbol{b} \cdot \boldsymbol{a})+\boldsymbol{c}[(\boldsymbol{b i}) \cdot \boldsymbol{a}] \boldsymbol{i} \\
& =\boldsymbol{c}\{\boldsymbol{b} \cdot \boldsymbol{a}+[(\boldsymbol{b} \boldsymbol{i}) \cdot \boldsymbol{a}] \boldsymbol{i}\} \\
& =\boldsymbol{c}\{\boldsymbol{b} \cdot \boldsymbol{a}+\boldsymbol{b} \wedge \boldsymbol{a}\} \\
& =\boldsymbol{c} \boldsymbol{b} \boldsymbol{a} .
\end{aligned}
$$

1 Introduction

This document discusses reflections of vectors and of geometrical products of two vectors, in two-dimensional Geometric Algebra (GA). It then uses reflections to solve a simple tangency problem.

2 Reflections in 2D GA

2.1 Reflections of a single vector

For any two vectors $\hat{\boldsymbol{u}}$ and \boldsymbol{v}, the product $\hat{\boldsymbol{u}} \boldsymbol{v} \hat{\boldsymbol{u}}$ is

$$
\begin{align*}
\hat{\boldsymbol{u}} \boldsymbol{v} \hat{\boldsymbol{u}} & =\{2 \hat{\boldsymbol{u}} \wedge \boldsymbol{v}+\boldsymbol{v} \hat{\boldsymbol{u}}\} \hat{\boldsymbol{u}} \tag{2.1}\\
& =\boldsymbol{v}+2[(\hat{\boldsymbol{u}} \boldsymbol{i}) \cdot \boldsymbol{v}] \boldsymbol{i} \hat{\boldsymbol{u}} \tag{2.2}\\
& =\boldsymbol{v}-2[\boldsymbol{v} \cdot(\hat{\boldsymbol{u}} \boldsymbol{i})] \hat{\boldsymbol{u}} \boldsymbol{i}, \tag{2.3}
\end{align*}
$$

which evaluates to the reflection of the reflection of \boldsymbol{v} with respect to $\hat{\boldsymbol{u}}$ (Fig. 2.1 .

Figure 2.1: Geometric interpretation of $\hat{\boldsymbol{u}} \boldsymbol{v} \hat{\boldsymbol{u}}$, showing why it evaluates to the reflection of \boldsymbol{v} with respect to $\hat{\boldsymbol{u}}$.

We also note that because $\boldsymbol{u}=|\boldsymbol{u}| \hat{\boldsymbol{u}}$,

$$
\begin{equation*}
\boldsymbol{u} \boldsymbol{v} \boldsymbol{u}=u^{2}(\hat{\boldsymbol{u}} \boldsymbol{v} \hat{\boldsymbol{u}})=\boldsymbol{u}^{2} \boldsymbol{v}-2[\boldsymbol{v} \cdot(\boldsymbol{u} \boldsymbol{i})] \boldsymbol{u} i . \tag{2.4}
\end{equation*}
$$

2.2 Reflections of a bivector, and of a geometric product of two vectors

The product $\hat{\boldsymbol{u}} \boldsymbol{v} \boldsymbol{w} \hat{\boldsymbol{u}}$ is

$$
\begin{aligned}
\hat{\boldsymbol{u}} \boldsymbol{v} \boldsymbol{w} \hat{\boldsymbol{u}} & =\hat{\boldsymbol{u}}(\boldsymbol{v} \cdot \boldsymbol{w}+\boldsymbol{v} \wedge \boldsymbol{w}) \hat{\boldsymbol{u}} \\
& =\hat{\boldsymbol{u}}(\boldsymbol{v} \cdot \boldsymbol{w}) \hat{\boldsymbol{u}}+\hat{\boldsymbol{u}}(\boldsymbol{v} \wedge \boldsymbol{w}) \hat{\boldsymbol{u}} \\
& =\hat{\boldsymbol{u}}^{2}(\boldsymbol{v} \cdot \boldsymbol{w})+\hat{\boldsymbol{u}}[(\boldsymbol{v} \boldsymbol{i}) \cdot \boldsymbol{w}] i \hat{\boldsymbol{u}} \\
& =\boldsymbol{v} \cdot \boldsymbol{w}+\hat{\boldsymbol{u}}[-\boldsymbol{v} \cdot(\boldsymbol{w} \boldsymbol{i})](-\hat{\boldsymbol{u}} \boldsymbol{i}) \\
& =\boldsymbol{v} \cdot \boldsymbol{w}+\hat{\boldsymbol{u}}^{2}[(\boldsymbol{w} \boldsymbol{i}) \cdot \boldsymbol{v}] \boldsymbol{i} \\
& =\boldsymbol{w} \cdot \boldsymbol{v}+\boldsymbol{w} \wedge \boldsymbol{v} \\
& =\boldsymbol{w} \boldsymbol{v}
\end{aligned}
$$

In other words, the reflection of the geometric product $\boldsymbol{v} \boldsymbol{w}$ is $\boldsymbol{w} \boldsymbol{v}$, and does not depend on the direction of the vector with respect to which it is reflected. We saw that the scalar part of $\boldsymbol{v} \boldsymbol{w}$ was unaffected by the reflection, but the bivector part was reversed.

Further to that point, the reflection of geometric product of \boldsymbol{v} and \boldsymbol{w} is equal to the geometric product of the two vectors' reflections:

$$
\begin{aligned}
\hat{\boldsymbol{u}} \boldsymbol{v} \boldsymbol{w} \hat{\boldsymbol{u}} & =\hat{\boldsymbol{u}} \boldsymbol{v}(\hat{\boldsymbol{u}} \hat{\boldsymbol{u}}) \boldsymbol{w} \hat{\boldsymbol{u}} \\
& =(\hat{\boldsymbol{u}} \boldsymbol{v} \hat{\boldsymbol{u}})(\hat{\boldsymbol{u}} \boldsymbol{w} \hat{\boldsymbol{u}}) .
\end{aligned}
$$

That observation provides a geometric interpretation (Fig. 2.2) of why reflecting a bivector changes its sign: the direction of the turn from \boldsymbol{v} to \boldsymbol{w} reverses.

Figure 2.2: Geometric interpretation of $\hat{\boldsymbol{u}} \boldsymbol{v} \boldsymbol{w} \hat{\boldsymbol{u}}$, showing why it evaluates to the reflection of \boldsymbol{v} with respect to $\hat{\boldsymbol{u}}$. Note that $\hat{\boldsymbol{u}} \boldsymbol{v} \boldsymbol{w} \hat{\boldsymbol{u}}=\hat{\boldsymbol{u}} \boldsymbol{v}(\hat{\boldsymbol{u}} \hat{\boldsymbol{u}}) \boldsymbol{w} \hat{\boldsymbol{u}}=$ $(\hat{\boldsymbol{u}} \boldsymbol{v} \hat{\boldsymbol{u}})(\hat{\boldsymbol{u}} \boldsymbol{w} \hat{\boldsymbol{u}})$.

3 Use of reflections to solve a simple tangency problem

The problem that we will solve is
"Given two coplanar circles, with a point Q on one of them, construct the circles that are tangent to both of the given circles, with point Q as one of the points of tangency" (Fig. 3.1).

Figure 3.1: Diagram for our problem: "Given two coplanar circles, with a point Q on one of them, construct the circles that are tangent to both of the given circles, with point Q as one of the points of tangency."

Several solutions that use rotations are given by 1], but here we will use reflections. The triangle $T Q C_{3}$ is isosceles, so $\hat{\boldsymbol{t}}$ is the reflection of $\hat{\boldsymbol{w}}$ with respect to the mediatrix of segment $\overline{Q T}$. In order to make use of that fact, we need to express the direction of that mediatrix as a vector written in terms of known quantities. We can do so by constructing another isosceles triangle $\left(C_{1} S C_{3}\right)$ that has the same mediatrix (Fig. 3.2).

The vector from C_{1} to S is $\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}$, so the direction of the mediatrix of $\overline{Q T}$ is the vector $\left[\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}\right] \boldsymbol{i}$. The unit vector with that direction is $\frac{\left[\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}\right] \boldsymbol{i}}{\left\|\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}\right\|}$. Therefore, to express $\hat{\boldsymbol{t}}$ as the reflection of $\hat{\boldsymbol{w}}$ with respect

Figure 3.2: Adding segment $\overline{C_{1} S}$ to Fig. 3.1 to produce a new isosceles triangle with the same mediatrix as $\overline{Q T}$.
to the mediatrix, we write

$$
\begin{aligned}
\hat{\boldsymbol{t}} & =\left[\frac{\left[\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}\right] \boldsymbol{i}}{\left\|\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}\right\|}\right][\hat{\boldsymbol{w}}]\left[\frac{\left[\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}\right] \boldsymbol{i}}{\left\|\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}\right\|}\right] \\
& =\frac{\left\{\left[\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}\right] \boldsymbol{i}\right\}[\hat{\boldsymbol{w}}]\left\{\left[\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}\right] \boldsymbol{i}\right\}}{\left[\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}\right]^{2}} \\
& =\frac{\left[\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}\right][\hat{\boldsymbol{w}}]\left[\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}\right] \boldsymbol{i} \boldsymbol{i}}{\left[\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}\right]^{2}}
\end{aligned}
$$

from which

$$
\begin{equation*}
\boldsymbol{t}\left(=r_{1} \hat{\boldsymbol{t}}\right)=-r_{1}\left\{\frac{\left[\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}\right][\hat{\boldsymbol{w}}]\left[\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}\right]}{\left[\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}\right]^{2}}\right\} \tag{3.1}
\end{equation*}
$$

Interestingly, the geometric interpretation of that result is that $\hat{\boldsymbol{t}}$ and $-\hat{\boldsymbol{w}}$ are reflections of each other with respect to the vector $\boldsymbol{c}_{2}+\left(r_{2}-r_{1}\right) \hat{\boldsymbol{w}}$. After expanding and rearranging the numerator and denominator of (3.1), then using $\boldsymbol{w}=r_{2} \hat{\boldsymbol{w}}$, we obtain

$$
\begin{equation*}
\boldsymbol{t}=r_{1}\left\{\frac{\left[c_{2}^{2}-\left(r_{2}-r_{1}\right)^{2}\right] \boldsymbol{w}-2\left[\boldsymbol{c}_{2} \cdot \boldsymbol{w}+r_{2}\left(r_{2}-r_{1}\right)\right] \boldsymbol{c}_{2}}{r_{2} c_{2}^{2}+2\left(r_{2}-r_{1}\right) \boldsymbol{c}_{2} \cdot \boldsymbol{w}+r_{2}\left(r_{2}-r_{1}\right)^{2}}\right\} \tag{3.2}
\end{equation*}
$$

References

[1] J. Smith, "Rotations of Vectors Via Geometric Algebra: Explanation, and Usage in Solving Classic Geometric "Construction" Problems" (Version of 11 February 2016). Available at http://vixra.org/abs/1605.0232.
[2] "Solution of the Special Case "CLP" of the Problem of Apollonius via Vector Rotations using Geometric Algebra". Available at http://vixra.org/abs/1605.0314.
[3] "The Problem of Apollonius as an Opportunity for Teaching Students to Use Reflections and Rotations to Solve Geometry Problems via Geometric (Clifford) Algebra". Available at http://vixra.org/abs/1605.0233.

