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The Earth’s diametrically opposed, presumably symmetric, tides are due to the Moon’s differential gravitational
force varying across the Earth. This is not intuitively obvious, but becomes clear when the physics is examined
mathematically. The presumed symmetry is due to an approximation that holds when the radius of the affected
body (e.g., The Earth) is much less than its center-to-center distance from the affecting body (e.g., the Moon).
The exact solution indicates an asymmetry, which becomes more pronounced as the assumption loses its
applicability.
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1. Introduction
Explaining why the Earth experiences height tides (or

low tides) simultaneously on opposite hemispheres is
not intuitively obvious. If due to the gravitational force
of the Moon (and, to a lesser extent, that of the Sun),1

one might expect there to be a tidal bulge solely on the
’near’ hemisphere (i.e., the one closer to the Moon), as
illustrated in Figure 1 [2].

This is clearly not observed. Most websites that ex-
plain the tides follow the following logic or something
similar [1].

"The tidal force is a secondary effect of the force of
gravity and is responsible for the tides. It arises because
the gravitational force exerted by one body on another is
not constant across it; the nearest side is attracted more
strongly than the farther side. Thus, the tidal force is
differential ... For a given (externally generated) grav-
itational field, the tidal acceleration at a point with re-
spect to a body is obtained by vectorially subtracting the
gravitational acceleration at the center of the body (due
to the given externally generated field) from the gravi-
tational acceleration (due to the same field) at the given
point. Correspondingly, the term tidal force is used to de-
scribe the forces due to tidal acceleration. Note that for
these purposes the only gravitational field considered is
the external one; the gravitational field of the body is not
relevant ...

"By Newton’s law of universal gravitation and laws of
motion, a body of mass M [i.e., the Earth] at a distance
D from the center of a sphere of mass m [i.e., the Moon]
feels a force F = −GMm/D2 equivalent to an acceler-
ation A = −Gm/D2 [along] a unit vector pointing from
the body m to the body M ... Consider now the accel-

1 Only the Moon’s effect is examined in this paper. It has been esti-
mated to be approximately twice that of the Sun [1].

Figure 1. Tidal Misconceptions [2]

eration due to the sphere of mass m experienced by a
particle in the vicinity of the body of mass M. With D as
the distance from the center of m to the center of M, let
R be the (relatively small) distance of the particle from
the center of the body of mass M. For simplicity, distance
are ... considered only in the direction pointing towards
or away from the sphere of mass m.

"If the body of mass M is itself a sphere of radius R,
then the new particle considered may be located on its
surface, at a distance D+R from the center of the sphere
of mass m, and R may be taken as positive where the par-
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ticle’s distance from m is greater than R. Leaving aside
whatever gravitational acceleration may be experienced
by the particle towards M on account of M’s own mass,
we have the acceleration on the particle due to gravi-
tational force towards m as A = − Gm

(D+R)2 . Pulling out

the D2 term from the denominator gives A =− GmD2

(1+R/D)2 ,
... [which expands, via the Maclaurin series, into] ...
A = GmD2+(2GM/D2)(R/D)+ ....

"The first term is the gravitational acceleration due to
m at the center of the reference body M, i.e., at the point
where R is zero [i.e., Earth’s center]. This term does not
affect the observed acceleration of particles on the sur-
face of M because with respect to m, M (and everything
on its surface) is in free fall. When the force on the far
particle is subtracted from the force on the near particle,
this first term cancels, as do all other even-order terms.
The remaining (residual) terms represent the difference
mentioned above and are tidal force (acceleration) terms.
When R is small compared to D, the terms after the first
residual term are very small and can be neglected, giv-
ing the approximate tidal acceleration (axial) for the dis-
tances R considered, along the axis joining the centers of
M and m [as] A ≈+2GMR/D3."

We see equal magnitude accelerations for the maxi-
mum tides, implying symmetry. Additional websites that
explain the ocean tides often cite the hemispherical oppo-
sites as symmetric based on polynomial expansions and
neglecting higher-order terms beyond the second power,
e.g., "The tide generating force can be decomposed into
components perpendicular and parallel to the sea surface.
The tides are produced by the horizontal components ...
The tidal potential is symmetric about the Earth-moon
line, and it produces symmetric bulges [3]." This con-
clusion implicitly assumes that the ratio between the ra-
dius of the affected body and its center-to-center distance
from the affecting body is « 1. A common illustration is
shown in Figure 2.
2. Tidal Asymmetry?

The goal here is to show that, using the exact, vs. the
asymptotic, solution to the differential force between the
Moon’s gravitational pull at the Earth’s surface vs. at its
center, an asymmetry between the tides will result for
equal angles θ on the Earth’s far and near hemispheres.
This asymmetry will exist for both the magnitude of
the differential force (∆g) and the angle (β ). Figure 3
provides the geometry for the comparison. Note that,
for the near hemisphere, the Moon’s gravitational force
at the surface is almost always greater than that at the
Earth’s center,2 as indicated by the first forces triangle

2 As θn approaches 90o, βn reaches a maximum then starts to decrease,
with the angle at which the maximum occurs being closer to 90o as
R/D decreases. This will be shown later via plots of the differences

Figure 2. Effect of Differential (Tidal) Forces [4]

for the near hemisphere. The opposite holds exclusively
for the far hemisphere, where the Moon’s gravitational
force at the Earth’s center is always greater than at the
surface, as indicated by the second forces triangle for the
far hemisphere. Calculations for the various parameters
are as follows:

dn =
√
(D−Rcosθn)2 +(Rsinθn)2 =√

D2 −2DRcosθn +R2

d f =
√
(D+Rcosθ f )2 +(Rsinθ f )2 =√

D2 +2DRcosθ f +R2

Assuming, for convenience, that G (gravitational con-
stant) and m (Moon’s mass) are both unity, gmn = 1/d2

n ,
gm f = 1/d2

f , gc = 1/D2. In addition, the Moon’s grav-
itational force is assumed to act on a unit mass of 1kg
of ocean water on the Earth’s surface, so that the force
equations developed below can be viewed as characteriz-
ing the force per unit of affected mass, essentially an ac-
celeration. therefore, the differential forces between the
Moon’s gravitational pull at the Earth’s surface and at the
Earth’s center are as follows:

∆gn =
√

gm,
2
n +g2

c −2gm,ngccosφn

∆g f =
√

gm,
2
f +g2

c −2gm, f gccosφ f

cosφn = (D−Rcosθn)/dn

cosφ f = (D+Rcosθ f )/d f

between the ∆g forces for corresponding angles θ on the near and far
hemispheres.
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Figure 3. Geometry for Analysis 3
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gm,n/sinβn = ∆gn/sinφn, yielding
βn = arcsin(gm,nsinφn/∆gn)

gm, f /sin(π −β f ) = ∆g f /sinφ f , yielding
gm, f /sinβ f = ∆g f /sinφ f , yielding
β f = arcsin(gm, f sinφ f /∆g f ).

To compare corresponding angles θ on the near and
far hemispheres in terms of the differences between the
differential forces in terms of magnitude (∆g) and direc-
tion (β ), we calculate the following pair of differences
for 0 ≤ θ ≤ π/2: (1) ∆gn − ∆g f and (2) ∆βn − ∆β f .
For convenience, we assume D = 1 and express R as
a fraction of D ranging from 0.001 to 0.5 and includ-
ing the ratio for the Earth-Moon system, i.e., R/D =
(6,371km)/(384,400km) = 0.0166. Figures 4 and 5 plot
both pairs of differences over the complete range. Fig-
ures 6 and 7 are analogous plots in terms of the percent
differences (relative to the average of the corresponding
values for the far and near hemispheres). All four include
the results for the Earth-Moon system, with g and m set
to unity.

The expected trend is that the Moon’s gravitational
force on the near hemisphere, albeit decreasing from
θ = 0 to 90o, vs. the Moon’s gravitational force on the
far hemisphere, always increasing, is always greater for
corresponding values of θ , with equality achieved only
when θ = 90o. As a result, the differential force on the
near hemisphere, albeit decreasing from θ = 0 to 90o,
always exceeds the differential force on the far hemi-
sphere, also always decreasing, as evidenced by the
values remaining positive, albeit decreasing, from θ =
0 to 90o. This trend is evident in Figures 4 and 6, in-
creasing as R/D increases.3

The trend for the direction (angle β ) of the differential
force on the near hemisphere vs. far hemisphere is also
evident from Figures 5 and 7. On the far hemisphere, this
angle always increases from θ = 0 to 90o. On the near
hemisphere, it also increases over nearly the entire range,
only showing a slight decrease from θ = 89o to 90o. The
result is that the difference between the angles of the dif-
ferential forces is always positive (i.e., βn > β f ). How-
ever, as shown in Figures 5 and 7, this difference reaches
a maximum as β approaches 90o, with the maximum oc-
curring at a lesser angle with increasing R/D.4 This max-
imum value occurs where dn = D (d f is always > D), i.e.,

3 Also shown in this figure is the trend for the Earth-Moon system with
the actual values of the gravitational constant (6.674x10−11m3/kg− s)
and Moon’s mass (7.348x1022kg) included. The actual center-to-center
distance between the Earth and Moon and the Earth’s actual radius are
already accounted for by R/D = 0.0166.
4 The inflection point is impossible to see until R/D reaches 0.1 due to
the scale of the axes.

dn = D, yielding
√

D2 −2DRcosθn +R2 = D

θn = arccos(R/2D)

Table 1 lists where these maxima occur.
3. Ring-Spring Analogy

Figure 8 illustrates the assumed tidal effect for the
asymptotic case where R/D « 1, such that the tides are
symmetric on both hemispheres. A force pulling at one
end of the ring-spring (with the other end fixed), such
as the Moon, translates into a differential force as if
pulling at both ends (neither end fixed). An observer in
the middle of the ring-spring before any force is applied
sees both ends of the spring as equidistant, and the ring as
circular. After the force is applied, the observer still sees
both ends equidistant, albeit now equally farther away,
and the ring stretched to form a symmetrical ellipse. This
is the assumed behavior of the tides when R « D.

Figure 9 assumes the ring-spring starts in ’deep space’
where there is no gravity. There, no deformation will
occur. If the bottom is pulled, uniform deformation will
occur, analogous to the deformation in Figure 8 since
there is still no gravity. However, as the ring-spring enters
a gravitational field, it acquires weight, with the weight
being proportional to the length of the spring such that,
towards the top, the coils feel a greater pull (more coils)
than near the bottom (less coils). Now the deformation
is not uniform and an observer originally at the middle
of the spring when the ends were equidistant now will
see the upper end farther away than the lower. The ring
also deforms into more of an egg-shape than a symmetric
ellipse. This is the analogy for the case where R is not «
D. This parallels the results from the analysis as shown in
Figures 4 through 7, i.e., there is an asymmetry between
the two hemispheres, more pronounced as R approaches
D.
4. Conclusion

The explanation for the Earth’s tides is not intuitively
obvious, but appears to suggest an expectation of sym-
metry on the two hemispheres, i.e., equally-high high
tides and equally-low low tides, diametrically opposite.
The analysis performed here suggests that this symme-
try is the result of an approximation, usually quite good
when the radius of the affected body is much less than
the distance between its center and that of the affect-
ing body (e.g., Earth-Moon). However, exact solution of
the differential tidal force equations demonstrates that
there always is an asymmetry, more pronounced as the
affected body radius approaches the center-to-center dis-
tance from the affecting body. This peaks at approxi-
mately 10 percent in terms of magnitude and direction
for R/D = 0.0166 for the Earth-Moon system (Figures 6
and 7).
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Figure 4. Differences between Moon’s Differential Force for Corresponding Position on Near and Far Hemisphere
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Figure 5. Differences between Angles of Moon’s Differential Force for Corresponding Position on Near and Far Hemisphere
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Figure 6. Figure 4 Differences Measured as Percents
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Figure 7. Figure 5 Differences Measured as Percents
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Figure 8. Ring-Spring Analogy for Asymptotic Deformation R << D
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Figure 9. Ring-Spring without and with Gravity

5. Addendum I: Effect of Earth’s Rotation
about the Earth-Moon Barycenter

The Earth’s monthly rotation about the Earth-Moon
barycenter can affect the tides. Referring to Fig-
ure 10, the Earth-Moon barycenter (B) is located
4671km (4.671x106m) from the Earth’s center, within
the Earth itself. With a rotational period (p) about
this point of 27.32 d (sidereal month [5]), the tangen-
tial speed at θ f = 0o (along Earth-Moon axis on the
’far’ side) is 2(R + B)/p = 29.4m/s for R (earth) =
6371km (6.371x106m). Compared to the daily rotational
speed at the equator, 2πR(86400s) = 463m/s, this is
small (approximately 6 percent) but not negligible. The
centrifugal force on 1kg of ocean due to this barycentric
rotation is (1kg)(29.4m/s)2/(R+B)= 7.82x10−5N. The
differential gravitational force on 1kg of ocean from the
Moon at this point is Gm(1kg)

1/D2−1/(R+D)2 = 1.07x10−6N

where m (moon) = 7.348x1022kg and D =
384400km (3.844x108m). Therefore the centrifugal
force from the barycentric rotation is approximately 70
times that from the differential gravitational force at this
point.

Even at the ’near’ side (θn = 0o), the barycen-
tric centrifugal force dominates that from the differ-
ential gravitational force. At this point (along Earth-
Moon axis on the ’near’ side), the tangential speed is
2π(R − B)/([27.32d][86400s/d]) = 4.52m/s. The cen-
trifugal force on 1kg of ocean due to this barycentric ro-
tation is (1kg)(4.52m/s)2/(R−B) = 1.20x10−5N. The
differential gravitational force on 1kg of ocean from
the Moon at this point is Gm(1kg)

1/(D−R)2−1/D2 = 1.07x10−6N.
Therefore the centrifugal force from the barycentric rota-
tion is still approximately 10 times that from the differen-

tial gravitational force at this point. Clearly, the dynamic
effects from the rotation of the Earth-Moon system about
its barycenter dominates over the static effect from the
differential gravitational force from the Moon.

If one examines the variation of the radial (outward
from center of Earth) component of the barycentric cen-
trifugal force over each hemisphere (C f ,r and Cn,r), one
finds the difference between these forces (C f ,r −Cn,r)
decreasing from a maximum of 6.62x10−5N at θ f =

0o vs. θn = 0o to 1.15x10−6N at θ f = 89o vs. θn = 89o

(the difference is naturally zero when both θ f and θn =
90o). Therefore, there is a strong asymmetry between the
two hemispheres, as one would expect given R + B ≈
7(R−B). Scaled to 1x10−5N, this asymmetry is shown
in Figure 11. Note from the plot also the ratios of the
radial component of the barycentric centrifugal force
to the magnitude of the differential gravitational force
on the two hemispheres. It remains between approxi-
mately 70 and 90 for the far hemisphere, peaking around
θ f = 75o, while rising from approximately 10 to 82 from
θn = 0o to θn = 90o. Clearly there is strong asymmetry
predicted due to the barycentric centrifugal force, with
the tides on the far hemisphere exceeding those on the
near, opposite to the trend for the differential gravita-
tional force. However, due to the dominance of the for-
mer, the latter does not come close to an offset, so asym-
metric tides are predicted.
6. Addendum II: An Intriguing ’Coinci-

dence?’
Neither the exact solution to the differential gravi-

tational force approach nor incorporating the effect of
the Earth’s barycentric centrifugal force was able to es-
tablish the alleged symmetry of the tides across the
Earth’s hemispheres. However, an interesting anomaly
that might bear further examination is revealed if one
combines the barycentric effect with the Moon’s grav-
itational force directly, i.e., without the differential ef-
fect. In Addendum I, the barycentric centrifugal on 1kg
of ocean at θ f = 0o (along Earth-Moon axis on the ’far’
side) was calculated as 7.82x10−5N. At θn = 0o (along
Earth-Moon axis on the ’near’ side), the corresponding
force is 1.20x10−5N. What are the gravitational forces
(direct, not differential) of the Moon on the same 1kg of
ocean water at these points?

At the ’far’ side (θ f = 0o), this is Gm/(R + D)2 =
(6.674x10−11m3/kg−s)(7.348x1022kg)

(6.371x106m + 3.844x108m)2 = 3.21x10−5N. At

the ’near’ side (θn = 0o), it is Gm/(D − R)2 =
(6.674x10−11m3/kg−s)(7.348x1022kg)

(3.844x108m−6.371x106m)2 = 3.43x10−5N. At
the ’far’ side (θ f = 0o), the barycentric centrifu-
gal and Moon’s gravitational forces act in opposite
directions, yielding a net force radially outward of
7.82x10−5N − 3.21x10−5N = 4.61x10−5N. At the
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Figure 10. Earth-Moon System Showing Barycenter
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Figure 11. Centrifugal Force from Barycenter Rotation vs. Differential Gravity Force

13
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’near’ side (θn = 0o), these two forces act in the same
directions, yielding a net force radially outward of
1.20x10−5N + 3.43x10−5N = 4.63x10−5N. These are
essentially equal, both radially outward, inferring sym-
metry of the tides at these highest points. Is this just a
coincidence, or might an explanation for tidal symmetry
rely on this combination of forces, i.e., including the
Moon’s direct gravitational rather than its differential
gravitational effect? To examine this conjecture over the
entire pair of hemispheres, we employ the geometry as
shown in Figure 12.

The barycentric centrifugal and Moon’s gravitational
(direct) forces are calculated over both hemispheres from
the preceding formulas. These are then combined vec-
torially to yield the net forces along with the directions
relative to the x-axis, also as shown in the figures. The
differences between the net forces on the ’far’ and ’near’
sides and the differences between the angles of these
forces are shown in Figure 13. Also shown are the ratio
of these differences to their average values for the corre-
sponding locations in each hemisphere.

The results are as follows. For the net forces them-
selves, the differences between corresponding locations
in each hemisphere are quite small, on the order of
1x10−7N or less, or < 1 percent of their average value.
Similarly, the differences between the angles for these
net forces at corresponding locations is quite small, on
the order of 0.01 radians or less, again < 1 percent of
their average value. What this suggests is that combining
the barycentric centrifugal force and the Moon’s grav-
itational (direct, not differential) forces vectorially pro-
duces the alleged symmetry between the tides on the op-
posite hemispheres. Might this, and not just the one dif-
ferential gravitational force, be the reason for the sym-
metry of the alleged tides?

However, now that we are considering the direct grav-
itational effect of the Moon, what about that of the Sun,
which is (M/m)(D/S)2 = 180 times stronger, where M
= mass of the Sun (1.989x1030kg) and S = distance from
Sun’s center to Earth’s (1.496x108km)? The Moon’s di-
rect gravitational force on the near vs. far side differs
by 3.43x10−5N − 3.21x10−5N = 2.20x10−6N, approx-
imately 7 percent relative to the force at the Earth’s cen-
ter. For the Sun, this difference is GM

1/[S−R]2−1/[S+R]2 =

1.01x10−6N, approximately 0.02 percent relative to the
force at the Earth’s center (GM/S2 = 0.00593N). When
considering the effect of the differential gravitational
forces, this is an important contributor, nearly half the
value of the Moon’s. However, for direct gravitational
force, the variation across the Earth due to the Sun’s
gravity is negligible, i.e., it affects the Earth gravitation-
ally on essentially an equal basis everywhere (0.00593
N). Therefore, as with the Earth’s own daily rotational
centrifugal and direct gravitational forces, the Sun’s di-

rect gravitational force is essentially uniform over the en-
tire planet, thereby introducing no asymmetry.

We are left to ponder whether there is an alternative
explanation for the alleged symmetry of the tides other
than accepting the approximation employed when deriv-
ing the differential gravitational effect as in [1]. If the
essentially uniform effects from the Sun’s and Earth’s
own direct gravitational forces, as well as that from the
Earth’s daily rotational centrifugal force, introduce no
asymmetry, might the combination of the barycentric
centrifugal and Moon’s direct gravitational forces ex-
plain what has so far been attributed to an approximation
in the differential gravitational force derivation?
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Figure 12. Moon’s Direct Gravitational and Barycentric Centrifugal Forces 15
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Figure 13. Centrifugal Force from Barycenter Rotation Combined with Moon’s Gravitational (Direct) Force

16


