On the Unification of the Constants of Nature

Brent Jarvis
Embry–Riddle Aeronautical University
JarvisB@my.erau.edu

Abstract
A short essay that unifies electromagnetism and gravity with a 5–D system of natural units.

INTRODUCTION

The magnetic flux quantum \(\Phi_0 \) [1, 2, 3] is equivalent to

\[
(1) \quad \Phi_0 = \frac{h}{Q_0},
\]

where \(h \) is Planck's constant [4] and \(Q_0 \) is the charge of an alpha particle (2e). Planck's reduced constant \(\hbar \) is

\[
(2) \quad \hbar = \frac{h}{2\pi},
\]

which can be defined further as

\[
(3) \quad \hbar = \alpha m_e r_B c,
\]

where \(\alpha \) is the fine structure constant, \(m_e \) is an electron's mass, \(r_B \) is the Bohr radius, and \(c \) is the velocity of light in a vacuum. Combining Eqs. 1, 2 and 3, the electric and magnetic flux quanta can be unified with

\[
(4) \quad 2\pi \hbar = Q_0 \Phi_0 = 2\pi \alpha m_e r_B c,
\]

which merges into
Bohr did not deduce his radius r_b from an alpha particle ($Q_0 = 2e$ = a helium nucleus and not a hydrogen nucleus). The adjusted radius r_0 for the helium system is defined by Eq. 5 and not by Eq. 3. The 5 dimensions of the system are balanced by the dimensionless constant C,

$$2\pi \hbar^2 = Q_0 \Phi_0 e m_e r_b c.$$

The modified version of Eq. 5 (including C and r_0) is

$$2Ch^2 = Q_0 \Phi_0 e m_e r_0 c.$$

The total angular momentum of an electron J [5] can be included with

$$2CJ^2 = nQ_0 \Phi_0 e m_e r_0 c,$$

and the definition of the dimensionless unit n is

$$n = |\ell \pm s|(|\ell \pm s| + 1),$$

where ℓ is the azimuthal quantum number and s is the spin quantum number.

MATTER WAVES AND MASS–ENERGY

A particle's wavelength λ can be determined with de Broglie's matter wave relation

$$\lambda = \frac{\hbar}{p} = \frac{2\pi \hbar}{mv}.$$

[6] where p is the particle's momentum and v is its velocity. With the mass quantized in units of m_o, Eq. 10 can be expressed in the natural units of helium as

$$\lambda = \frac{2\pi \hbar}{m_e v_0} = \frac{n\hbar Q_0 \Phi_0 \pi r_0 c}{v_0 C J^2},$$

where v_0 is an electron's velocity quantum. The electron's frequency quantum f_0 can be determined by

$$f_0 = \frac{v_0}{\lambda_0} = \frac{v_0^2 C J^2}{n\hbar Q_0 \Phi_0 \pi r_0 c}.$$
The dimensionally balanced version of de Broglie's matter wave relation is

\[n\alpha = \frac{-\lambda_0\nu_0r_0^2}{\hbar\Phi_0\Phi_0'r_0c}, \]

where \(\alpha \) is the fine structure constant again. The dimensionally balanced version of Einstein's \(E = mc^2 \) is

\[(2\pi/n\alpha) = \frac{E_0\Phi_0r_0}{j^2c}, \]

and the energy of electromagnetic radiation (\(E_R = \hbar 2nf \)) is simply

\[E_R = \Phi_0\Phi_0'f_0. \]

CONCLUSION

Can Big-G be included in the helium unit system? Newton's gravitational constant \(G \) can be deduced from the Planck mass unit \(m_P \) [4],

\[m_P = \sqrt{\frac{\hbar c}{G}}, \quad G = \frac{\hbar c}{m_P}, \]

but a coupling factor is needed for unification since \(m_P^2 >> m_e^2 \). To nullify the Planck mass unit, we can use the Gaussian gravitational constant \(k \) [7],

\[k = \sqrt{G} = \frac{2\pi}{T\sqrt{M + m}}, \]

where \(T \) is a secondary's period, \(M \) is the mass of a primary, and \(m \) is the mass of a secondary. Converting Eq. 17 into helium units we get

\[k_0 = \frac{2\pi f_0}{\sqrt{M_0}}, \quad 2\pi = \frac{\Phi_0\Phi_0'}{\hbar}, \quad k_0 = \frac{\Phi_0\Phi_0'f_0}{\hbar\sqrt{M_0}} = \frac{E_R}{\hbar\sqrt{M_0}}. \]

where \(M_0 \) is the sum of the mass of an alpha particle and \(2m_e \). \(G \) can then be included in the units from the relation

\[G = \frac{E_A^2}{\hbar^2M_0} = \frac{n_eE_A^2}{j^2M_0}, \]

where \(n_e \) is relative to both electrons. We can see from Eq. 19 that \(G \) is proportional to the energy of electromagnetism squared! Are black holes analogous to neutrons?
By setting the base mass unit to $A = \sqrt{M}$, the relationship between gravity and electromagnetism can be expressed as

\[
(20) \quad E R \sqrt{n_2} = J.A k_0 !
\]

DEDICATION

This essay is dedicated to Cynthia Cashman Lett. Thank you, and I love you.

REFERENCES

[1] "Magnetic flux quantum $\Phi_0". 2010 CODATA recommended values.