On the Unification of the Constants of Nature

Brent Jarvis
Embry–Riddle Aeronautical University
JarvisB@my.erau.edu

Abstract
A short essay that unifies electromagnetism and gravity with a 5–D system of natural units.
INTRODUCTION

The magnetic flux quantum Φ_0 [1, 2, 3] is equivalent to

$$\Phi_0 = \frac{h}{Q_0},$$

where h is Planck's constant [4] and Q_0 is the charge of an alpha particle ($2e$). Planck's reduced constant \hbar is

$$\hbar = \frac{h}{2\pi},$$

which can be defined further as

$$\hbar = \alpha m_e r_B c,$$

where α is the fine structure constant, m_e is an electron's mass, r_B is the Bohr radius, and c is the velocity of light in a vacuum. Combining Eqs. 1, 2 and 3, the electric and magnetic flux quanta can be unified with

$$2\pi \hbar = Q_0 \Phi_0 = 2\pi \alpha m_e r_B c,$$

and since $(2\pi = Q_0 \Phi_0 / \hbar)$, Eq. 4 can be merged into

$$2\pi \hbar^2 = Q_0 \Phi_0 \alpha m_e r_B c.$$

Bohr did not deduce his radius r_B from an alpha particle ($Q_0 = 2e = a$ helium nucleus and not a hydrogen nucleus). The adjusted radius r_0 for the helium system of natural units is defined by Eq. 5 and not by Eq. 3. The 5 dimensions of the system are balanced by the dimensionless constant C,

$$\frac{[2\pi] [h(eV \cdot s)] [h(kg \cdot m^2/s)]}{[Q_0(2e)] [\Phi_0(V \cdot s)] [\alpha] [m_e(kg)] [r_0(m)] [c(m/s)]} = \pi \alpha = C$$

The modified version of Eq. 5 (including C and r_0) is

$$2Ch^2 = Q_0 \Phi_0 \alpha m_e r_0 c.$$

The total angular momentum J [5] can be included with

$$2CJ^2 = n Q_0 \Phi_0 \alpha m_e r_0 c,$$

and the definition of the dimensionless unit $n = 1, 2, 3...$ is
\[n = |\ell + s|(|\ell + s| + 1), \]

where \(\ell \) is the azimuthal quantum number and \(s \) is the spin quantum number.

MATTER WAVES AND MASS–ENERGY

A particle's wavelength \(\lambda \) can be determined with de Broglie's matter wave equation

\[\lambda = \frac{\hbar}{p} = \frac{2\pi \hbar}{mv}, \]

[6] where \(p \) is the particle's momentum and \(v \) is its velocity. With the mass quantized in units of \(m_e \), Eq. 10 can be expressed in the helium natural unit system as

\[\lambda_0 = \frac{2\pi \hbar}{m_e v_0} = \frac{n \hbar \Phi_0 \pi r_0 c}{v_0 CJ^2}, \]

where \(v_0 \) is an electron's velocity quantum. The electron's frequency quantum \(f_0 \) can be determined by

\[f_0 = \frac{v_0}{\lambda_0} = \frac{v_0^2 CJ^2}{n \hbar \Phi_0 \pi r_0 c}. \]

The dimensionally balanced version of de Broglie's matter wave equation is

\[n\alpha = \frac{\lambda_0 v_0 J^2}{\hbar \Phi_0 \pi r_0 c}, \]

where \(\alpha \) is the fine structure constant again. The dimensionally balanced version of Einstein's \(E = mc^2 \) is

\[\frac{2\pi}{n\alpha} = \frac{E \Phi_0 \pi r_0}{J^2 c}, \]

and the energy of electromagnetic radiation \((E_R = \hbar 2\pi f) \) is simply

\[E_R = \Phi_0 \pi r_0 f_0. \]

CONCLUSION

Can Big-G be included in the helium unit system? Newton's gravitational constant G can be deduced from the Planck mass unit \(m_P \) [4],

\[n = |\ell \pm s|(|\ell \pm s| + 1), \]
but a coupling factor is needed for unification since \(m_p^2 \gg m_e^2 \). To nullify the Planck mass unit, we can use the Gaussian gravitational constant \(k \) [7],

\[
(17) \quad k = \sqrt{\frac{2\pi}{T\sqrt{M + m}}},
\]

where \(T \) is a secondary’s period, \(M \) is the mass of a primary, and \(m \) is the mass of a secondary. Converting Eq. 17 into the natural units of helium we get

\[
(18) \quad k_0 = \frac{2\pi f_0}{\sqrt{M_\phi}}, \quad 2\pi = \frac{Q_0 \Phi_0}{\hbar}, \quad k_0 = \frac{Q_0 \Phi_0 f_0}{\hbar \sqrt{M_\phi}} = \frac{E_R}{\hbar \sqrt{M_\phi}}.
\]

where \(M_\phi \) is the sum of the mass of an alpha particle and \(2m_e \). We can then include \(G \) in the units with

\[
(19) \quad G = \frac{E_R^2}{\hbar^2 M_\phi} = \frac{nE_R^2}{j^2 M_\phi}.
\]

We can see that \(G \) is directly proportional to the energy of electromagnetic radiation squared! Are black holes analogous to neutrons? By setting the mass unit to \(H = \sqrt{M_\phi} \), we can determine the standard gravitational parameter \(\mu \) of a celestial body from the angular frequency of its radiation,

\[
(20) \quad \sqrt{\mu} = Hk_0 = \frac{E_R}{\hbar} = \frac{Q_0 \Phi_0 f_0}{\hbar} = 2\pi f_0,
\]

and the frequency of gravitoelectromagnetic waves can be determined with

\[
(21) \quad f_0 = \frac{Hk_0}{2\pi}.
\]

To conclude, the relationship between gravity and electromagnetism is

\[
(22) \quad E_R \sqrt{n} = JHk_0.
\]

DEDICATION

This essay is dedicated to Cynthia Cashman Lett. Thank you, and I love you.
REFERENCES

