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Abstract

We derive new type of no-hidden-variables theorem based on the as-
sumptions proposed by Kochen and Specker. We consider N spin-1/2
systems. The hidden results of measurement are either +1 or −1 (in
h̄/2 unit). We derive some proposition concerning a quantum expected
value under an assumption about the existence of the Bloch sphere in
N spin-1/2 systems. However, the hidden variables theory violates the
proposition with a magnitude that grows exponentially with the number
of particles. Therefore, we have to give up either the existence of the Bloch
sphere or the hidden variables theory. Also we discuss two-dimensional
no-hidden-variables theorem of the KS type. Especially, we systemati-
cally describe our assertion based on more mathematical analysis using
raw data in a thoughtful experiment.

Keywords: 03.65.Ud (Quantum non locality), 03.65.Ta (Quantum measure-
ment theory), 03.65.Ca (Formalism)
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1 Introduction

Quantum mechanics (cf. [1, 2, 3, 5, 4, 6]) gives accurate and at times remarkably
accurate numerical predictions. Much experimental data has fit to the quantum
predictions for long time.

Kochen and Specker present the no-hidden-variables theorem (the KS theo-
rem) [7]. The KS theorem says the non-existence of a real-valued function which
is multiplicative and linear on commuting operators. The proof of the KS theo-
rem relies on intricate geometric argument. Greenberger, Horne, and Zeilinger
discover [8, 9] the so-called GHZ theorem for four-partite GHZ state. And, the
KS theorem becomes very simple form (see also Refs. [10, 11, 12, 13, 14]).

It is begun to research the validity of the KS theorem by using inequalities
(see Refs. [15, 16, 17, 18]). To find such inequalities to test the validity of the
KS theorem is particularly useful for experimental investigation [19]. One of
authors derives an inequality [18] as tests for the validity of the KS theorem. The
quantum predictions violate the inequality when the system is in an uncorrelated
state. An uncorrelated state is defined in Ref. [20]. The quantum predictions
by n-partite uncorrelated state violate the inequality by an amount that grows
exponentially with n.

Recently, Leggett-type non-local variables theory [21] is experimentally in-
vestigated [22, 23, 24]. The experiments report that quantum mechanics does
not accept Leggett-type non-local variables interpretation. However there are
debates for the conclusions of the experiments. See Refs. [25, 26, 27].

As for the applications of quantum mechanics, implementation of a quan-
tum algorithm to solve Deutsch’s problem [28, 29, 30] on a nuclear magnetic
resonance quantum computer is reported firstly [31]. Implementation of the
Deutsch-Jozsa algorithm on an ion-trap quantum computer is also reported [32].
There are several attempts to use single-photon two-qubit states for quantum
computing. Oliveira et al. implement Deutsch’s algorithm with polarization
and transverse spatial modes of the electromagnetic field as qubits [33]. Single-
photon Bell states are prepared and measured [34]. Also the decoherence-free
implementation of Deutsch’s algorithm is reported by using such single-photon
and by using two logical qubits [35]. More recently, a one-way based exper-
imental implementation of Deutsch’s algorithm is reported [36]. In 1993, the
Bernstein-Vazirani algorithm was reported [37]. It can be considered as an ex-
tended Deutsch-Jozsa algorithm. In 1994, Simon’s algorithm was reported [38].
Implementation of a quantum algorithm to solve the Bernstein-Vazirani parity
problem without entanglement on an ensemble quantum computer is reported
[39]. Fiber-optics implementation of the Deutsch-Jozsa and Bernstein-Vazirani
quantum algorithms with three qubits is discussed [40]. A quantum algorithm
for approximating the influences of Boolean functions and its applications is
recently reported [41].

On the other hand, the double-slit experiment is an illustration of wave-
particle duality. In it, a beam of particles (such as photons) travels through
a barrier with two slits removed. If one puts a detector screen on the other
side, the pattern of detected particles shows interference fringes characteristic
of waves; however, the detector screen responds to particles. The system exhibits
the behaviour of both waves (interference patterns) and particles (dots on the
screen).

If we modify this experiment so that one slit is closed, no interference pattern
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is observed. Thus, the state of both slits affects the final results. We can
also arrange to have a minimally invasive detector at one of the slits to detect
which slit the particle went through. When we do that, the interference pattern
disappears [42]. An analysis of a two-atom double-slit experiment based on
environment-induced measurements is reported [43].

We try to implement the double-slit experiment. There is a detector just
after each slit. Thus interference figure does not appear, and we do not consider
such a pattern. The possible values of the result of measurements are ±1 (in
h̄/2 unit). If a particle passes one side slit, then the value of the result of
measurement is +1. If a particle passes through another slit, then the value of
the result of measurement is −1. This is an easy detector model for a Pauli
observable.

In this paper, we derive new type of no-hidden-variables theorem based on
the assumptions proposed by Kochen and Specker. We consider N spin-1/2
systems. The hidden results of measurement are either +1 or −1 (in h̄/2 unit).
We derive some proposition concerning a quantum expected value under an
assumption about the existence of the Bloch sphere in N spin-1/2 systems.
However, the hidden variables theory violates the proposition with a magnitude
that grows exponentially with the number of particles. Therefore, we have to
give up either the existence of the Bloch sphere or the hidden variables theory.
Also we discuss two-dimensional no-hidden-variables theorem of the KS type,
by using the double-slit experiment. Especially, we systematically describe our
assertion based on more mathematical analysis using raw data in a thoughtful
experiment.

Throughout this paper, we confine ourselves to the two-level (e.g., electron
spin, photon polarizations, and so on) and the discrete eigenvalue case.

2 Notations and preparation to get new type of

no-hidden-variables theorem of the KS type

We consider a two-dimensional space H . Let N denote a set of the numbers

{1, 2, . . . ,+∞} (2.1)

that contains the countably infinite. Let S be {±1}. We assume that every
result of measurements lies in S. We assume that every time t lies in N. Let
N1 denote a set of the numbers

{1, 5, 9, . . . ,+∞} (2.2)

that contains the countably infinite. Here we introduce t1 ∈ N1. Let N2 denote
a set of the numbers

{2, 6, 10, . . . ,+∞} (2.3)

that contains the countably infinite. Here we introduce t2 ∈ N2. Let N3 denote
a set of the numbers

{3, 7, 11, . . . ,+∞} (2.4)
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that contains the countably infinite. Here we introduce t3 ∈ N3. Let N4 denote
a set of the numbers

{4, 8, 12, . . . ,+∞} (2.5)

that contains the countably infinite. Here we introduce t4 ∈ N4. Let 
σ be

(σx, σy, σz), (2.6)

the vector of Pauli operators. The measurements (observables) of 
n · 
σ are pa-
rameterized by a unit vector 
n (its direction along which the spin component
is measured). Here, · is the scalar product in R3. One measures an observable

n · 
σ. We define a notation θ(t) which represents predetermined result of mea-
surements at time t. We assume that measurement of an observable 
n · 
σ at
time t for a physical system in a state ψ yields a value θ(ψ, 
n · 
σ, t) ∈ S.

We consider the following:
Assumption: M (predetermined measurement outcome),

θ(ψ, 
n · 
σ, t) ∈ S. (2.7)

Assumption: E (quantum expected value),

Tr[ψ
n · 
σ] = lim
m→∞

�m

t=1 θ(ψ, 
n · 
σ, t)

m
. (2.8)

Assumption: T
If

Tr[ψ
n · 
σ] = lim
m→∞

�m

t=1 θ(ψ, 
n · 
σ, t)

m
, (2.9)

then

Tr[ψ
n · 
σ] = lim
m1→∞

�m1

t1=1
θ(ψ, 
n · 
σ, t1)

m1
= lim

m2→∞

�m2

t2=2
θ(ψ,
n · 
σ, t2)

m2
(2.10)

and

Tr[ψ
n · 
σ] = lim
m3→∞

�m3

t3=3
θ(ψ,
n · 
σ, t3)

m3
= lim

m4→∞

�m4

t4=4
θ(ψ, 
n · 
σ, t4)

m4
. (2.11)

3 New type of no-hidden-variables theorem of

the KS type

In this section, we give new type of no-hidden-variables theorem of the KS type.

3.1 The existence of the Bloch sphere

We assume a pure spin-1/2 state ψ lying in the x-y plane. Let 
σ be (σx, σy, σz),
the vector of Pauli operators. The measurements (observables) on a spin-1/2
state lying in the x-y plane of 
n · 
σ are parameterized by a unit vector 
n (its
direction along which the spin component is measured). Here, · is the scalar
product in R3.

5



We have a quantum expected value EkQM, k = 1, 2 as

EkQM ≡ Tr[ψ
nk · 
σ], k = 1, 2. (3.1)

We have 
x ≡ 
x(1), 
y ≡ 
x(2), and 
z ≡ 
x(3). They are the Cartesian axes relative
to which spherical angles are measured. We write two unit vectors in the plane
defined by 
x(1) and 
x(2) in the following way:


nk = cos θk
x
(1) + sin θk
x

(2). (3.2)

Here, the angle θk takes only two values:

θ1 = 0, θ2 =
π

2
. (3.3)

We derive a necessary condition for the quantum expected value for the
system in a pure spin-1/2 state lying in the x-y plane given in (3.1). We derive
the possible values of the scalar product

2�

k=1

�
EkQM × E

k
QM

�
≡ 
EQM


2. (3.4)

EkQM is the quantum expected value given in (3.1). We see that


EQM

2 = �σx�

2 + �σy�
2. (3.5)

We use the decomposition (3.2). We introduce simplified notations as

Ti = Tr[ψ
x(i) · 
σ] (3.6)

and

(c1k, c
2
k, ) = (cos θk, sin θk). (3.7)

Then, we have


EQM

2 =

2�

k=1

�
2�

i=1

Tic
i
k

�2
=

2�

i=1

T 2i ≤ 1, (3.8)

where we use the orthogonality relation

2�

k=1

cαk c
β
k = δα,β . (3.9)

From a proposition of the quantum theory, the Bloch sphere with the value of

2�

i=1

T 2i (3.10)

is bounded as

2�

i=1

T 2i ≤ 1. (3.11)
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The reason of the condition (3.8) is the Bloch sphere

3�

i=1

(Tr[ψ
x(i) · 
σ])2 ≤ 1. (3.12)

Thus we derive a proposition concerning a quantum expected value under an
assumption of the existence of the Bloch sphere (in a spin-1/2 system). The
proposition is


EQM

2 ≤ 1. (3.13)

This inequality is saturated iff ψ is a pure state lying in the x-y plane. That is,

2�

i=1

(Tr[ψ
x(i) · 
σ])2 = 1. (3.14)

Hence, we derive the following proposition concerning the existence of the Bloch
sphere when the system is in a pure state lying in the x-y plane


EQM

2
max = 1. (3.15)

3.2 The existence of hidden measurement outcome which

is ±1

We assign the truth value “1” for Assumption M, Assumption E, and Assump-
tion T. Let Ak be 
nk · 
σ. We assume four gedanken experiments in the same
state ψ. The value of θ(ψ,A1, t1) is independent of θ(ψ,A1, t2). We note that
the measurement time is different from each other. Here, we assume t1 ∈ N1

and t2 ∈ N2. The value of θ(ψ,A2, t3) is independent of θ(ψ,A2, t4). We
note that the measurement time is different from each other. Here, we assume
t3 ∈ N3 and t4 ∈ N4. The values of θ(ψ,A1, t1), θ(ψ,A1, t2), θ(ψ,A2, t3), and
θ(ψ,A2, t4) are independent of each other. We note that the measurement time
is different from each other. We assume that the number of each of quantum
measurements is the countably infinite. We know that a sum of ‘four’ countably
infinite is the countably infinite. We do not have to assign definite values to
non-commuting observables in the same time.

From Assumption E and Assumption T, the quantum expected value in (3.1)
(k = 1), which is the average of the results of measurements, is given by

E1QM = lim
m1→∞

�m1

t1=1
θ(ψ,A1, t1)

m1
. (3.16)

From Assumption M, the possible values of the measured result θ(ψ,A1, t1) are
±1.

From Assumption T, the same quantum expected value is given by

E1QM = lim
m2→∞

�m2

t2=2
θ(ψ,A1, t2)

m2
. (3.17)

From Assumption M, the possible values of the measured result θ(ψ,A1, t2) are
±1. From Assumption T, we see


{t1|t1 ∈ N1 ∧ θ(ψ,A1, t1) = 1}
 = 
{t2|t2 ∈ N2 ∧ θ(ψ,A1, t2) = 1}
,


{t1|t1 ∈ N1 ∧ θ(ψ,A1, t1) = −1}
 = 
{t2|t2 ∈ N2 ∧ θ(ψ,A1, t2) = −1}
.

(3.18)
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From Assumption E and Assumption T, the quantum expected value in (3.1)
(k = 2), which is the average of the results of measurements, is given by

E2QM = lim
m3→∞

�m3

t3=3
θ(ψ,A2, t3)

m3
. (3.19)

From Assumption M, the possible values of the measured result θ(ψ,A2, t3) are
±1.

From Assumption T, the same quantum expected value is given by

E2QM = lim
m4→∞

�m4

t4=4
θ(ψ,A2, t4)

m4
. (3.20)

From Assumption M, the possible values of the measured result θ(ψ,A2, t4) are
±1. From Assumption T, we see


{t3|t3 ∈ N3 ∧ θ(ψ,A2, t3) = 1}
 = 
{t4|t4 ∈ N4 ∧ θ(ψ,A2, t4) = 1}
,


{t3|t3 ∈ N3 ∧ θ(ψ,A2, t3) = −1}
 = 
{t4|t4 ∈ N4 ∧ θ(ψ,A2, t4) = −1}
.

(3.21)

We derive a necessary condition for the two quantum expected values for
the system in a pure spin-1/2 state lying in the x-y plane given in (3.16) and
(3.19). We derive the possible values of the scalar product 
EQM


2 of the two
quantum expected values, EkQM given in (3.16) and (3.19).

We introduce an assumption that Sum rule and Product rule commute with
each other [44]. We do not pursue the details of the assumption. To pursue the
details is an interesting point. It is suitable to the next step of researches. We
have


EQM

2

=

�

lim
m1→∞

�m1

t1=1
θ(ψ,A1, t1)

m1
× lim
m2→∞

�m2

t2=2
θ(ψ,A1, t2)

m2

�

+

�

lim
m3→∞

�m3

t3=3
θ(ψ,A2, t3)

m3
× lim
m4→∞

�m4

t4=4
θ(ψ,A2, t4)

m4

�

=

�

lim
m1→∞

�m1

t1=1

m1
· lim
m2→∞

�m2

t2=2

m2
θ(ψ,A1, t1)θ(ψ,A1, t2)

�

+

�

lim
m3→∞

�m3

t3=3

m3
· lim
m4→∞

�m4

t4=4

m4
θ(ψ,A2, t3)θ(ψ,A2, t4)

�

≤

�

lim
m1→∞

�m1

t1=1

m1
· lim
m2→∞

�m2

t2=2

m2
|θ(ψ,A1, t1)θ(ψ,A1, t2)|

�

+

�

lim
m3→∞

�m3

t3=3

m3
· lim
m4→∞

�m4

t4=4

m4
|θ(ψ,A2, t3)θ(ψ,A2, t4)|

�

=

�

lim
m1→∞

�m1

t1=1

m1
· lim
m2→∞

�m2

t2=2

m2

�

+

�

lim
m3→∞

�m3

t3=3

m3
· lim
m4→∞

�m4

t4=4

m4

�

= 2.

(3.22)
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From Assumption M, we have

|θ(ψ,A1, t1)θ(ψ,A1, t2)| = +1, |θ(ψ,A2, t3)θ(ψ,A2, t4)| = +1. (3.23)

The above inequality (3.22) is saturated when

θ(ψ,A1, t1)θ(ψ,A1, t2) = 1, θ(ψ,A2, t3)θ(ψ,A2, t4) = 1. (3.24)

This implies

θ(ψ,A1, t1) = θ(ψ,A1, t2), θ(ψ,A2, t3) = θ(ψ,A2, t4). (3.25)

The above condition (3.25) can be possible since, as we have said,


{t1|t1 ∈ N1 ∧ θ(ψ,A1, t1) = 1}
 = 
{t2|t2 ∈ N2 ∧ θ(ψ,A1, t2) = 1}
,


{t1|t1 ∈ N1 ∧ θ(ψ,A1, t1) = −1}
 = 
{t2|t2 ∈ N2 ∧ θ(ψ,A1, t2) = −1}
,

(3.26)

and


{t3|t3 ∈ N3 ∧ θ(ψ,A2, t3) = 1}
 = 
{t4|t4 ∈ N4 ∧ θ(ψ,A2, t4) = 1}
,


{t3|t3 ∈ N3 ∧ θ(ψ,A2, t3) = −1}
 = 
{t4|t4 ∈ N4 ∧ θ(ψ,A2, t4) = −1}
.

(3.27)

Thus we derive a proposition concerning the two quantum expected values under
an assumption that we assign the truth value “1” for Assumption M, Assumption
E, and Assumption T (in a spin-1/2 system). The proposition is 
EQM


2 ≤ 2.
This inequality can be saturated. Hence we derive the following proposition
concerning Assumption M, Assumption E, and Assumption T:


EQM

2
max = 2. (3.28)

3.3 Contradiction

We cannot assign the truth value “1” for two propositions (3.15) (concerning
the existence of the Bloch sphere) and (3.28) (concerning Assumption M, As-
sumption E, and Assumption T), simultaneously, when the system is in a pure
state lying in the x-y plane. Therefore, we are in the KS contradiction. We do
not assign the truth value “1” for five assumptions

1. Assumption M

2. Assumption E

3. Assumption T

4. The existence of the Bloch sphere

5. Sum rule and Product rule commute with each other,

simultaneously.
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4 High dimensional no-hidden-variables theorem

of KS type

In this section, we derive a proposition concerning a quantum expected value
under an assumption of the existence of the Bloch sphere in N spin-1/2 systems
(1 ≤ N < +∞). This assumption intuitively depictures our physical world.
However, the hidden variables theory (the result of measurements is ±1) violates
the proposition with a magnitude that grows exponentially with the number of
particles. We have to give up either the existence of the Bloch sphere or the
hidden variables theory. Therefore, the hidden variables theory cannot depicture
our physical world with a violation factor that grows exponentially with the
number of particles.

4.1 The existence of the Bloch sphere

Assume that we have a set of N spins 1
2 . Each of them is a spin-1/2 pure state

lying in the x-y plane. Let us assume that one source of N uncorrelated spin-
carrying particles emits them in a state, which can be described as a multi spin-
1/2 pure uncorrelated state. Let us parameterize the settings of the jth observer
with a unit vector 
nj (its direction along which the spin component is measured)
with j = 1, . . . , N . One can introduce the ‘hidden variables’ correlation function,
which is the average of the product of the hidden results of measurement

EHV(
n1, 
n2, . . . , 
nN ) = �r(
n1, 
n2, . . . , 
nN )�avg, (4.1)

where r is hidden result. We assume the value of r is ±1 (in (h̄/2)N unit), which
is obtained if the measurement directions are set at 
n1, 
n2, . . . , 
nN .

Also one can introduce a quantum correlation function with the system in
such a pure uncorrelated state

EQM(
n1, 
n2, . . . , 
nN ) = tr[ρ
n1 · 
σ ⊗ 
n2 · 
σ ⊗ · · · ⊗ 
nN · 
σ] (4.2)

where ⊗ denotes the tensor product, · the scalar product in R2, 
σ = (σx, σy) is
a vector of two Pauli operators, and ρ is the pure uncorrelated state,

ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN (4.3)

with ρj = |Ψj��Ψj | and |Ψj� is a spin-1/2 pure state lying in the x-y plane.
One can write the observable (unit) vector 
nj in a plane coordinate system

as follows:

nj(θ

kj
j ) = cos θ

kj
j 
x

(1)
j + sin θ

kj
j 
x

(2)
j , (4.4)

where 
x
(1)
j = 
x and 
x

(2)
j = 
y are the Cartesian axes. Here, the angle θ

kj
j takes

two values (two-setting model):

θ1j = 0, θ2j =
π

2
. (4.5)

We derive a necessary condition to be satisfied by the quantum correlation
function with the system in a pure uncorrelated state given in (4.2). In more
detail, we derive the value of the product of the quantum correlation function,
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EQM given in (4.2), i.e., 
EQM

2. We use the decomposition (4.4). We introduce

simplified notations as

Ti1i2...iN = tr[ρ
x
(i1)
1 · 
σ ⊗ 
x

(i2)
2 · 
σ ⊗ · · · ⊗ 
x

(iN )
N · 
σ] (4.6)

and


cj = (c1j , c
2
j) = (cos θ

kj
j , sin θ

kj
j ). (4.7)

Then, we have


EQM

2

=

2�

k1=1

· · ·

2�

kN=1




2�

i1,...,iN=1

Ti1...iN c
i1
1 · · · c

iN
N





2

=

2�

i1,...,iN=1

T 2i1...iN ≤ 1, (4.8)

where we use the orthogonality relation
�2

kj=1
cαj c

β
j = δα,β. The value of

�2
i1,...,iN=1

T 2i1...iN is bounded as
�2

i1,...,iN=1
T 2i1...iN ≤ 1. We have

N�

j=1

2�

ij=1

(tr[ρj
x
(ij)
j · 
σ])2 ≤ 1. (4.9)

From the convex argument, all quantum separable states must satisfy the in-
equality (4.8). Therefore, it is a separability inequality. It is important that
the separability inequality (4.8) is saturated iff ρ is a multi spin-1/2 pure un-
correlated state such that, for every j, |Ψj� is a spin-1/2 pure state lying in the
x-y plane. The reason of the inequality (4.8) is due to the following quantum
inequality

2�

ij=1

(tr[ρj
x
(ij)
j · 
σ])2 ≤ 1. (4.10)

The inequality (4.10) is saturated iff ρj = |Ψj��Ψj | and |Ψj� is a spin-1/2 pure
state lying in the x-y plane. The inequality (4.8) is saturated iff the inequality
(4.10) is saturated for every j. Thus we have the maximal possible value of the
scalar product as a quantum proposition concerning the existence of the Bloch
sphere


EQM

2
max = 1 (4.11)

when the system is in such a multi spin-1/2 pure uncorrelated state.

4.2 The hidden variables theory

On the other hand, a correlation function satisfies the hidden variables theory
if it can be written as

EHV(
n1, 
n2, . . . , 
nN ) = lim
m→∞

�m

l=1 r(
n1, 
n2, . . . , 
nN , l)

m
(4.12)
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where l denotes a label and r is the result of measurement of the dichotomic
observables parameterized by the directions of 
n1, 
n2, . . . , 
nN .

Assume the quantum correlation function with the system in a pure uncor-
related state given in (4.2) admits the hidden variables theory. One has the
following proposition concerning the hidden variables theory

EQM(
n1, 
n2, . . . , 
nN ) = lim
m→∞

�m

l=1 r(
n1, 
n2, . . . , 
nN , l)

m
. (4.13)

In what follows, we show that we cannot assign the truth value “1” for the
proposition (4.13) concerning the hidden variables theory.

Assume the proposition (4.13) is true. By changing the label l into l′, we
have the same quantum expected value as follows

EQM(
n1, 
n2, . . . , 
nN ) = lim
m→∞

�m

l′=1 r(
n1, 
n2, . . . , 
nN , l
′)

m
. (4.14)

An important note here is that the value of the right-hand-side of (4.13) is
equal to the value of the right-hand-side of (4.14) because we only change the
label.

We abbreviate r(
n1, 
n2, . . . , 
nN , l) to r(l) and r(
n1, 
n2, . . . , 
nN , l
′) to r(l′).

We introduce an assumption that Sum rule and Product rule commute with
each other [44]. We have


EQM

2

=

2�

k1=1

· · ·

2�

kN=1

�
lim
m→∞

�m

l=1 r(l)

m
× lim
m→∞

�m

l′=1 r(l
′)

m



=
2�

k1=1

· · ·
2�

kN=1

�
lim
m→∞

�m

l=1

m
· lim
m→∞

�m

l′=1

m
r(l)r(l′)



≤

2�

k1=1

· · ·

2�

kN=1

�
lim
m→∞

�m

l=1

m
· lim
m→∞

�m

l′=1

m
|r(l)r(l′)|



=

2�

k1=1

· · ·

2�

kN=1

�
lim
m→∞

�m

l=1

m
· lim
m→∞

�m

l′=1

m


= 2N . (4.15)

We use the following fact

|r(
n1, 
n2, . . . , 
nN , l)r(
n1, 
n2, . . . , 
nN , l
′)| = +1. (4.16)

The inequality (4.15) is saturated since we have


{l|r(
n1, 
n2, . . . , 
nN , l) = 1 ∧ l ∈ N}


= 
{l′|r(
n1, 
n2, . . . , 
nN , l
′) = 1 ∧ l′ ∈ N}
,


{l|r(
n1, 
n2, . . . , 
nN , l) = −1 ∧ l ∈ N}


= 
{l′|r(
n1, 
n2, . . . , 
nN , l
′) = −1 ∧ l′ ∈ N}
. (4.17)

Hence one has the following proposition concerning the hidden variables theory.


EQM

2
max = 2N . (4.18)
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4.3 Contradiction

Clearly, we cannot assign the truth value “1” for two propositions (4.11) (con-
cerning the existence of the Bloch sphere) and (4.18) (concerning the hidden
variables theory), simultaneously, when the system is in a multiparticle pure
uncorrelated state. Of course, each of them is a spin-1/2 pure state lying in the
x-y plane. Therefore, we are in the KS contradiction when the system is in such
a multiparticle pure uncorrelated state. Thus, we cannot accept the validity
of the proposition (4.13) (concerning the hidden variables theory) if we assign
the truth value “1” for the proposition (4.11) (concerning the existence of the
Bloch sphere). In other words, the hidden variables theory does not reveal our
physical world.

5 Two-dimensional no-hidden-variables theorem

of the KS type

In this section, we consider the relation between the double-slit experiment and
the hidden variables theory. We try to implement the double-slit experiment.
There is a detector just after each slit. Thus interference figure does not appear,
and we do not consider such a pattern. The possible values of the result of
measurements are ±1 (in h̄/2 unit). If a particle passes one side slit, then the
value of the result of measurement is +1. If a particle passes through another
slit, then the value of the result of measurement is −1.

5.1 A wave function analysis

Let (σz, σx) be Pauli vector. We assume that a source of spin-carrying particles
emits them in a state |ψ�, which can be described as an eigenvector of a Pauli
observable σz. We consider a quantum expected value �σx� as

�σx� = �ψ|σx|ψ� = 0. (5.1)

The above quantum expected value is zero if we consider only a wave function
analysis.

We derive a necessary condition for the quantum expected value for the
system in the pure spin-1/2 state |ψ� given in (5.1). We derive the possible
value of the product �σx� × �σx� = �σx�

2. �σx� is the quantum expected value
given in (5.1). We derive the following proposition

�σx�
2 = 0. (5.2)

Hence we have

�σx�
2 ≤ 0. (5.3)

Thus,

(�σx�
2)max = 0. (5.4)
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5.2 The hidden variables theory

On the other hand, a mean value E admits the hidden variables theory if it can
be written as

E =

�m

l=1 rl(σx)

m
(5.5)

where l denotes a label and r is the result of measurement of the Pauli observable
σx. We assume the value of r is ±1 (in h̄/2 unit).

Assume the quantum mean value with the system in an eigenvector (|ψ�) of
the Pauli observable σz given in (5.1) admits the hidden variables theory. One
has the following proposition concerning the hidden variables theory

�σx�(m) =

�m

l=1 rl(σx)

m
. (5.6)

We can assume as follows by Strong Law of Large Numbers [45],

�σx�(+∞) = �σx� = �ψ|σx|ψ�. (5.7)

In what follows, we show that we cannot assign the truth value “1” for the
proposition (5.6) concerning the hidden variables theory.

Assume the proposition (5.6) is true. By changing the label l into l′, we have
the same quantum mean value as follows

�σx�(m) =

�m

l′=1 rl′(σx)

m
. (5.8)

An important note here is that the value of the right-hand-side of (5.6) is equal
to the value of the right-hand-side of (5.8) because we only change the label.

We introduce an assumption that Sum rule and Product rule commute with
each other [44]. We have

�σx�(m)× �σx�(m)

=

�m

l=1 rl(σx)

m
×

�m

l′=1 rl′(σx)

m

=

�m

l=1

m
·

�m

l′=1

m
rl(σx)rl′(σx)

≤

�m

l=1

m
·

�m

l′=1

m
|rl(σx)rl′(σx)|

=

�m

l=1

m
·

�m

l′=1

m
= 1. (5.9)

We use the following fact

|rl(σx)rl′(σx)| = 1. (5.10)

The inequality (5.9) is saturated since we have


{l|rl(σx) = 1 ∧ l ∈ N}
 = 
{l′|rl′(σx) = 1 ∧ l′ ∈ N}
,


{l|rl(σx) = −1 ∧ l ∈ N}
 = 
{l′|rl′(σx) = −1 ∧ l′ ∈ N}
. (5.11)
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Thus we derive a proposition concerning the quantum mean value under an
assumption that the hidden variables theory is true (in a spin-1/2 system), that
is

(�σx�(m)× �σx�(m))max = 1. (5.12)

From Strong Law of Large Numbers, we have

(�σx� × �σx�)max = 1. (5.13)

Hence we derive the following proposition concerning the hidden variables theory

(�σx�
2)max = 1. (5.14)

5.3 Contradiction

We do not assign the truth value “1” for two propositions (5.4) (concerning
a wave function analysis) and (5.14) (concerning the hidden variables theory),
simultaneously. We are in the KS contradiction.

We cannot accept the validity of the proposition (5.6) (concerning the hid-
den variables theory) if we assign the truth value “1” for the proposition (5.4)
(concerning a wave function analysis). In other words, the hidden variables
theory does not meet the detector model for the spin observable σx.

6 Conclusions

In conclusion, we have derived new type of no-hidden-variables theorem based
on the assumptions proposed by Kochen and Specker. We have considered N
spin-1/2 systems. The hidden results of measurement have been either +1 or
−1 (in h̄/2 unit). We have derived some proposition concerning a quantum
expected value under an assumption about the existence of the Bloch sphere
in N spin-1/2 systems. However, the hidden variables theory has violated the
proposition with a magnitude that grows exponentially with the number of
particles. Therefore, we have to have given up either the existence of the Bloch
sphere or the hidden variables theory. Also we have discussed two-dimensional
no-hidden-variables theorem of the KS type. Especially, we have systematically
described our assertion based on more mathematical analysis using raw data in
a thoughtful experiment.
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F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, Nature (London) 421, 48
(2003).

[33] A. N. de Oliveira, S. P. Walborn, and C. H. Monken, J. Opt. B: Quantum
Semiclass. Opt. 7, 288-292 (2005).

[34] Y.-H. Kim, Phys. Rev. A 67, 040301(R) (2003).

[35] M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, Phys. Rev.
Lett. 91, 187903 (2003).

[36] M. S. Tame, R. Prevedel, M. Paternostro, P. Böhi, M. S. Kim, and A.
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