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ABSTRACT

This theorem is based on holomorphy of studied functions and the
fact that near a singularity point the real part of some rational
function can take an arbitrary preassigned value.

The colored markers are as follows:

e - assumption or a fact, which is not proven at present;

- the statement, which requires additional attention;
- statement, which is proved earlier or clearly undestandable.

THEOREM

The real parts of all the nontrivial Riemann zeta function zeros p are

1
equal Re (p) = o

PROOF:

In relation to ((s) - Zeta function of Riemann is known [8, p. 5] two
equations each of which can serve as its definition:

00 1 0 1 —1
o= w=I(1-5) - mw>1oo
where p1,pa, ..., Pn, ... is a series of primes.

According to the functional equality [8, p. 22|, [4, p. 8-11] by part I (s) is
the Gamma function:
S 1—s

r(g) _ig(s):r(1;‘9>{ 2 ((1-s), Re(s)>0. (2)




From [4, p. 8-11] ¢ (5) = ((s), it means that Vp = o +it: ((p) = 0 and
0 <o <1 we have:

(P =C1—p)=C(1=p)=0 (3)

From [9], |7, p. 128], [8, p. 45] we know that ( (s) has no nontrivial zeros
on the line ¢ = 1 and consequently on the line ¢ = 0 also, in accordance
with (3) they don’t exist.

Let’s denote the set of nontrivial zeros ¢ (s) through P (multiset with
consideration of multiplicitiy):

PU{p: C(p) =0, p=o+it, 0< o<1},

e , 1
And:Pl(g{p: C(p) =0, p=o0+it, 0<0<§},

def 1 .
732={p: C(p)=07p25+zt},

Q.
h

€

1
P {p: C(p) =0, p=o+it, §<a<1}.
Then:
P:P1U7D2UP3 and Plﬁ’PQZPgﬁ’P?):Plﬁ’PSZQ,

PL=90P;=0.

Hadamard’s theorem (Weierstrass preparation theorem) about the
decomposition of function through the roots gives us the following result
8, p.- 30], [4, p. 31], [10]:

C(S)S(S_l)r(%)pl;(l—;)ep, Re(s) >0 (4)

a = In2y/m — % — 1, v — Euler’s constant and

(s I f
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According to the fact that

- Digamma function of [8, p. 31],
|4, p. 23| we have:

Cc<(> B +Z<

pEP

)2 (Fmm) e ©

n=1
C = const.

From [3, p. 160], [6, p. 272], [2, p. 81]:

1
Z_:1+%—ln2ﬁ:0,0230957... (7)
pEP

Indeed, from (3):

1 1 ( 1 1)
pEP P peP 1= P P
From (5):
Fl
¢’ (s) 11 1 1 (2)
2 = li - ~—a— gl
Z SZZZ% ¢ (s) 1—S+ . 2n +2F<>
pEP 2

Also it’s known, for example, from [8, p. 49], [2, p. 98] that the number
of nontrivial zeros of p = o + ¢t in strip 0 < ¢ < 1, the imaginary parts of
which ¢ are less than some number 7" > 0 is limited, i.e.,

[{p: pEP, p=0+it, [t|] <T}| < ooc.

1
Indeed, it can be presented that on the contrary the sum of peP would
p

have been unlimited.

Thus VT > 036, >0, d, > 0 such that

in area 0 <t < 9d,,0 < o < 0, there are no zeros p = o + it € P.



Let’s consider random root g € P.
Let’s denote k(q) the multiplicity of the root g.
Let’s examine the area Q (R) = {s: ||s — ¢|| < R, R > 0}.
From the fact of finiteness of set of nontrivial zeros ((s) in the limited

area follows 3 R > 0, such that Q(R) does not contain any root from P
except ¢ and also does not intersect with the axes of coordinates.

Im(s) 1

o
>3
8

N =
-

Fig. 1.

From [1], [8, p. 31], |4, p. 23] we know that the Digamma function

in the area Q(R) has no poles, i.e., Vs € Q(R)

Let’s denote:

and

o 1 1 1
Ip\(g}(5) d:f——+—s+ > .
peP\{q}

Hereinafter P\ {¢} = P\ {(q,k(q))} (the difference in the multiset).



1 1
Also we shall consider the summation - 7 p —— and } peP\(gh T
s — s —

1 1 1
further as the sum of pairs (s —, + s (1= ,0)) and > p P as the sum
1 1

of pairs <— + 1—) as a consequence of division of the sum from (6)
p 1—p

1 1Y) . 1 1 ) :
Zpep (E + ;) into ZpEP sTp + ZpE'P ; As specifed in [3], [5],

6], [8]-
Let’s note that Ip\ 4 (s) is holomorphic function V s € Q(R).

Then from (5) we have:

And in view of (4), (7):

¢ " (3)
Reg((j)) = %hm%—Re _%[‘ (§2>

+1Ip(s) | - (8)

Let’s note that from the equality of

1 1 1
PN D Dl (e i) B )

S—p
peP (1-p)eP peP

follows that:

Ip(1 = s) = —Ip(s), Ip\i—q}(1 = s) = —Ip\(g3(s), Re(s) > 0.

Besides

Ty (s) = Ip(s) — 1L

and Ip\ (g (s) is limited in the area of s € Q(R) as a result of absence of its
poles in this area as well as its differentiability in each point of this area.




If in (5) we replace s with 1 — s that in view of (7), in a similar way if we
take derivative of the principal logarithm (2):

s ,(1—s
C/(3>_|_C/(1_3>:_1F/ <§) _EF( 2 >—|—1n7r, Re(s) > 0. (10)

CE =) T () %«?;?

Let’s examine a circle with the center in a point ¢ and radius r < R, laying
in the area of Q(R):

Im(s) |
ty ....... <>
ymr ....... mr::
g ........................................................... ‘
o i amer R
Fig. 2.
For s = o + 1y, q = o, + 11,
k k k — o
R€ <Q) —_ Re : (Q> : — (Q)ga: 0-(]) 5 — k,(q)x 20-9
S—q Ty —og—ity  (x—0g)*+ (y—1y) r

Let’s prove a series of statements:
e STATEMENT A

In an arbitrarily small neighborhood of any nontrivial zero there is a point
with the following properties:

VqeP
dJ0<R,<R: VO<r<R, Im,:|m,—q||=r Re(m,) < Re(q),
¢ (my) eu—m» C(Rem) ¢ (Re(l—m,) _
B my ~ 1 —my) T Relm)) T (Rt — )



PROOF:

Let’s define function for s = z + iy € Q(R):

T(S)d:e£
1—s
S /
() 1F< 2) .,
5|1 o S\ o 1 —
2 2F(2> 2F< 5)
2
1—2
a F/
1 (E) 2)
+—= | —= — = + In 7.

For s = x + iy € Q(R) consider the following function:

Re(C0) €09 ) _cU-n_,Ma)

¢s)  C(l=s) C¢lr) C(A-z) “s-g¢

From (8) and (9) it is equal to:

= 2Re (T(S) + Ip\{q}(s) + ]p(w)) .

Since all the terms in parentheses are limited in the area of Q(R), then

~J



JdH1(R) >0, H(R) R, Vs=x+1iy € Q(R) :

— + —

Cs) C-s) (@) (-2 k)
'Re(as) (0—s ") Ci-n) g

On each of the semicircles: the left -

{s:|ls—q|l=r o,—r <z <o,} and right -

k(q)

S—dq

1s continuous and

{s:|ls—q| =r, 0 <z <o,+r} the function Re

takes values from —k(q to k(g)
r r

2k(q

H,(R)

Hmmin,r - QH =T, ||mma$,7“ - QH =r:

2k(q) _Hy\(R)., Re 2k(q)

Mpinr — (4 Mmaz,r — 4

, > 0.

Consequently V 0 < r <

) = Mmin,r, Mmaz,r -

Re > Hy(R)

and the sum of two functions:

() C-s5) (@ -2 .k
R€<<<s> (1-% "¢l <l-u) 2s—q)
e - 2K(9)

5—q

at the points of M, and My, Will have values with different signs.

Properties of continuous functions on take all intermediate values between
their extremes, it follows that 4 R,, € R,

R, >0:
2k
R, <R, # > Hi(R)



and then VO <r < R,
exists on the left semicircle point m, = T, + 1Ym, such that:

re(§lm) _€0om)  Clan) _Cl-m))

¢ (my) ¢(1—m,) ¢ (Tm,) C(1—zp,)

From this equality and (10), it follows that V 0 < r < R,,;:

¢ (my) ¢ (m,) ¢ (1 —my) ¢ —am,)
Re + Re ~ = Re-—— + Re -
C(mr) C(xmr) (1 _mr) C(l _xmr)
1—m
my ! r
[T () 1F< 2 > N
2 2p (L) (1 m)
I
2 2
l—x
xmr A et
1 ( 2 ) 1 ( 2 )
+-Re | —= — = +Inm =
F T
2 2
= ReT'(m,) = ReT'(1 —m,) = O(1),-0. (11)
]
From (1) you can write:
1 (=1 1 =1 Lo 1
Lyt y Loy by L
n=1 n=1 n n=24, n k=1 (Qk) n=1
le.,
1 (-1 1
C (S) 1 . 21—8 ; ns 1 _ 21—877 (8) ( )
The Dirichlet eta function is the function 7(s) defined by an alternating
series:
Vs: Re(s)>0.
n=1



This series in accordance with [8, §3, p. 29| converges V s : Re (s) > 0.

And the formula (12) is true for Vs : Re(s) >0, s # 1.

Lots of numbers type
pipht o p) 0k <log, X, 1< <m(X),
where p1, D2, ..., Pp, . . . - is a series of primes and 7(.X) is the prime counting

function:
=21

P <X

in accordance with the main theorem of arithmetic on decomposition of
natural numbers into the product of the powers of prime numbers contains
all natural numbers less than or equal to pr(x))+1 — 1 exactly once.

For arbitrary positive real numbers X, define a function V s : Re (s) > 0:

nx (s) =y —(_1)”— :

n=1, n—p p 2xxp ”)(()),k:ENO ns

For V s: Re(s) > 0 is executed:

oo o
1 2
x(8) = 2 v 2 e
. k
n=1,n pl p 2. <D ‘I(T)(() , ki€Ng n=1, n:pll‘lpl;Q>1<...>|<pﬂ_7(r)(()§)7 k;ENo, k1€N;
I.e., the first sum of the cost components of type
1
k; € Ny
k‘ls k‘gs TK'(X)S’ v ’
P1 Po “* Pr(x)

and in the second - double composed with an even index n:

1

kis kQS kﬂ(X)(S’ k27 Tt k?T(X) S NO; kl - Nl

D1 Do A Drx)

10



That can be written as:

2\ oo 1
s)=11—— 1k k -
Nx ( ) ( 28 Zn:l, n:p’flng*n-*p;(T)(())(), k;eNg ns

For  an  arbitrary  positive  real = number X  define
function V' s : Re(s) >0, s # 1:
1

def
)= T

[e,Vs: Re(s) >0, s# 1 and arbitrary fixed X > 0:

nx (s) -

e (9 =Tex (1 ) (14)

j 2

e STATEMENT B

For any value of the argument: s : Re(s) > 0 function nx (s) has a limit
when X — oo and it is:

lim nx (s) =n(s), Vs: Re(s) > 0.

X—o0

PROOQOF:

For any s : Re(s) > 1 this statement follows from the definition of an
infinite product, taking into account (1), (12), (13).

Let’s consider V s :  Re(s) > 0 a difference 7 (s) and nyx (s), denoting

1ts:

ox (s) =1 (s) = nx (s).

11



The function ¢x (s) is defined and analytic V s : Re(s) > 0.

Consequently V sg : Re(sg) > 0 function ¢y (s) is displayed in Taylor’s
number:

k!
k=0
Limit V s : Re(s) > 1:
Jim ¢x (s)=0
le,VkE=>0:
(F)
fim X0
X—o00 k!
Consequently V s : Re(s) > 0:
Jim ¢y (s) = 0.

This in turn means that Vs : Re(s) >0, s # 1

lim Cx (s) = C(s). (15)

X—o0

And in particular, because V0 < r < R, : ¢ (my) #0, ((Re(m,)) # 0,
C(1=m;) #0, ((Re(l—m,))#0:

Jim Inf|Cx (my) Cx (Re(my)) || = Inf|¢ (my) ¢ (Re(my))]l

i TG (1= my) Cx (Re(1 = my) | = | (1= my) ¢ (Re(1 = my)]

12



STATEMENT C

The limit of a private derivative on axis of ordinates of function

fx(z,y) Z In||¢x (v +iy) (x ()]

exists and is equal to a private derivative on a variable x to function
Fla,w) 2 Jim fr(e,y) = + i) C (@)
—00

in points (z, , Ym,) and (1 — Ty, —Ym, ):

.0 0
fm gt = g
.0 0
){11_1;20 %fX (CU, _ymr) R — %f(a:) _ymr) =1,
PROOF:

Since the function ¢ (z + 7y) is analytic, there are neighborhoods U(x,,,)
and U(1 — z,,,) of points z,, and 1 — z,, for which is carried out:

VeeU(xy), €Ul —=2n), Y="Yn, Y= —Ym,

1€ (& +iy) ¢ ()] # 0.
And taking into account (15):

Ve U(xmr)a YIS U(l - xmr)a Y=Ym.s Y= —Ym,;
dXo>0: VX > X;:
|Cx (2 +iy) Cx (v)|| # 0.

Consequently all functions fx(z, ym, ), fx (2, —ym,) at X > X and f(z,ym, ),
f(x,—ym. ) are correctly certain in neighborhoods U(z,, ) and

13



U(1l — x,,,) accordingly.

From the fact that the derivative:

) 0
o= F (@, Ym,) = 510 (1€ (@, + im,) € (2, )| =
~ RS ™) | p S () (16)

¢ (my) ¢ (@m,)

in accordance with (11) limited for V 0 < r < R,, should the existence of
a neighborhood U*(x,, ) € U(x,,, ) such that for V = € U*(z,,, ) will be
limited to the derivative:

0

%f(xv ymr)

< Q.

Based on the mean value theorem:

VAz>0:x, +Az e U'(x),,),
d0< b <1, 0<bBy<1:

fx(@m, + Az, ym,) — fx(@m,; Ym,) _ d
AZL‘ - afo(xmr + elAZE: ymr)

and

f(me + A.%‘, ymr) B f(xmr7ymr) _ 0
Az = axf(wmr + 0 Ax, ymr)'

From the definition of the limit it follows that:

Ve>0,d X;1>Xyp>0: VX > X;:

g
‘f(xmraymr) - fX(xmraymr) < EAZE,

‘f('rmr + A.I, ymr) - fX(xmr + AIE, ymr) < gASE

14



Le.,3X; > Xo: VX > X the derivative of function fx(x,y,, ) also will
be limited:

< oo, VaeeU(xy,)

0
S

and

0

0
‘_f(xmr + 92Ax7ymr> - %fX(ajmr + GlAajaymr) < e.

ox

Because Az > 0 can be chosen arbitrarily small, when Ax — 0 have:

< ¢,

0 0
S i) = i)

this proves the statement for the point (2., ym, ).

In a similar way it is possible to lead the same reasonings and for the point
(1 - xmr7 _ymr)

STATEMENT D

Since some instant, the sum of private derivatives on axis of ordinates of
function fx(x,y) in points (T, , Ym,) and (1 — x,, , =y, ) slightly different
from 0, i.e.:

Vex>0,d X, >0: VX > X.:

0 0
a_fo(xmraymr) + %fX(l — Tm,, _ym'r) <e.

PROOF:

15



From the previous statement it follows that V. ¢ > 0, 4 X, > 0 :
VX > X, :

O o tm) — 2 (s )| <

0
ox ox

DO ™

and 5 9
%f(l — Tm,., _ymr) _ %fX(]‘ — Tm,, _ymr)

<

DO ™

And taking into account (16) and the same equality:

) 0
S (= T =) = - IC (L= @, = ig,) € (1= )| =

Gm) (1o
B ¢ (1 —m, (1=,
=T Ty T )

it follows that:

C/ (mr) C/ (xmr) 0
Clmy) )~ aa? e

<

DO ™

e

and

CU-m) o C(1-x,) | O
m + Rec_(l_—xmr) + %fX(l — Tm,., _ymr)

<

DO ™

‘Re

And from (11):

|%fX(:cmr,ymr) + %f){(l — Ty —Ym, )| < €.
0
Note that:

gt = Ry e oy

16



ang(l — T,y _ymr) - _RegX (1 — mT)
X

And also from (14) for s=m,, s=1—m,, s=x, , s=1—1x,,:

In pn

RBEXI((S)) = Re Z ﬁ = Re Z Z lnpn. (17)
x\5 <X [ 1 — —

pn<X k=1 "
P

STATEMENT E

In an arbitrarily small neighborhood of any nontrivial zero, there is a point

with a real part equal to X

VqgeP,
dJ0<R,<R: VO<r<R, Im,:|m,—q||=r Re(m,) < Re(q),
1
m, = 5

PROOF:

From the previous statement, taking into account (17), we have:

Ve>0,d X, >0: VX > X,:

pu<X k=1 \Pn o P " "
Or:
00 1 1
Z Z Inp, (1 + cos(kym, Inp,)) Ko hO—an)| <€
pa<X k=1 P o

17



Let’s consider, that X, > 3, then at the same time two sums cannot be
equal to O:
1 + cos(ym, In2), 14 cos(y, In3),

because otherwise there would be two integers mq, ms € Z:

Ym, N2 =7+ 2rmy, Yy, In3 =7 4 27ms.

And given the fact that y,, # 0:

In3  1+2my
In2 142m;
) In3 . .
Since 2 > (0 should exist non-negative m; and msy:
n

31+2m1 — 21+2m2 .

That is impossible, since the left part of equality always odd, and right -
even.

For definiteness, we assume that:

1 + cos(ym, In2) > 0,

then, assuming:

1 1
DTy B 2(1_zm7-) % O’

as € take:

1 1 1
€= 51112 (1 + cos(ym, In2)) ‘ —

DTy Z(I_xmr) > 0.

Let’s come to the contradiction:

1 1

kT, k(1=

Z Zlnpn (1 + cos(kym, Inpy,)) >e, VX > X..

<X k=1

18



lLe.,

that is equivalent to:

Thus, we took a random nontrivial root ¢ = o, + it, € P and concluded
that:

o, =limxz,, = —
4 r—0 i 2’

le., P1 =Py = and

PZPZ)

that proves the basic statement and the assumption, which had been made
by Bernhard Riemann about of the real parts of the nontrivial zeros of Zeta
function.

19
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