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Abstract

The Fourier method is a convenient regularization method for solving a class of ill-posed
problems. This class of ill-posed problems can be also formulated as the problem of ill-posed
multiplication operator equation in the frequency domain. A recent work on the Morozov’s
discrepancy principle for the Fourier method are discussed in [2]. In this paper, we investigate
the Fourier method within the framework of regularization theory thoroughly for solving the
severely ill-posed problems. Many ill-posed examples are provided.
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1 Introduction

The main goal of this paper consists of demonstrating the advantages of using the notation of
spectral method within the framework of regularization theory [1] instead of the so-called Fourier
method [2]. Moreover, we answer the question whether the obtained convergence orders in [2] are
optimal.

Many PDE-based ill-posed problems in mathematical physics defined on a strip domain can
be formulated as the problem for solving an operator equation. Therefore, the theory analysis
such as error estimate for the spectral method is possible for this kind of ill-posed problems. As
in [2], we discuss this kind of ill-posed problems, which involves the numerical computation of
pseudodifferential operator.

Throughout this paper, we extend any function h(v) to the whole real line by setting the function
to be zero for v < 0 if necessary. Let

ĥ(ξ) =
1√
2π

∫ ∞
−∞

h(v)e−iξvdv (1)
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be the Fourier transform of the function h(v) ∈ L2(R). The Sobolev function space Hp(R) is defined
by

Hp(R) = {h(x)|h ∈ L2(R), ‖h‖p := (

∫ ∞
−∞

(1 + ξ2)p|ĥ(ξ)|2dξ) 1
2 <∞}, (2)

where ĥ(ξ) is the Fourier transform of function h(x), and ‖ · ‖ := ‖ · ‖0 denotes the norm in L2(R).
Consider the numerical computation of the pseudodifferential operator with an unbounded

symbol a(ξ, s) given by

f(v, s) =
1√
2π

∫ ∞
−∞

a(ξ, s)ĝ(ξ)eiξvdv, (3)

where 0 ≤ s ≤ L is a fixed constant, ĝ(ξ) is the Fourier transform of the exact data g(v) ∈ L2(R),
the data g(v) is only given approximately by gδ(v) ∈ L2(R) satisfying

‖g(·)− gδ(·)‖ ≤ δ, (4)

where δ is the noise level and assumed to be known.
If a(ξ, s) satisfies |a(ξ, s)| = O(exp(c|ξ|b)) as |ξ| → ∞ with c, b > 0, we called the problem of

numerical computation of above pseudodifferential operators severely ill-posed problem. Likewise,
if a(ξ, s) satisfies |a(ξ, s)| = O(|ξ|b) as |ξ| → ∞ with b > 0, we called the problem of numerical
computation of above pseudodifferential operators mildly ill-posed problem. In this paper, we only
consider the severely ill-posed problem since the mildly ill-posed problems can be solved more easily.

A-priori information about unknown solution has been proved to be essential in the analysis
of ill-posed problems in mathematical physics. Otherwise, without the a-priori information the
convergence rate of the constructed regularization method is arbitrarily slow [1]. For analysis we
assume that there holds the a-priori bound for the unknown solution

‖f(·, L)‖p ≤ E, p ≥ 0. (5)

Let fδα(·, s) denote a regularization solution. If 0 ≤ s < L, we called the fδα(·, s) interior inversion.
If s = L, we called the fδα(·, s) boundary inversion.

1.1 Previous work on Fourier method

In [2], it is assumed that the symbol a(ξ, s) satisfies the following growth condition:

C1 exp(sφ(|ξ|)) ≤ |a(ξ, s)| ≤ C2 exp(sφ(|ξ|)), |ξ| ≥ c1, s ∈ [0, L],

|a(ξ, s)| ≤ z(s), |ξ| < c1, (6)

where the function φ(x) is strictly increasing with limx→∞ φ(x) = ∞, the function z(s) ∈ C[0, L]
with z(s) > 0 and C1, C2, c1 > 0 are constants.

Obviously, the ill-posedness of problem (1.3) is caused by the components of high frequency. If
c1 6= 0, we only need to regularize the solution in the case of |ξ| ≥ c1 because for the case of |ξ| ≤ c1
the problem (1.3) is well-posed which can be observed by the following derivation:
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Let the sets W (ξ) = {ξ||ξ| ≤ c1} and I(ξ) = {ξ||ξ| ≥ c1}, and we have L2(R) = L2(W )
⊕
L2(I).

Consider the difference

‖f̂(ξ, s)− f̂(ξ, s)‖2L2(W ) =

∫
W

|a(ξ, s)|2|ĝ(ξ)− ĝδ(ξ)|2dξ

≤ z2(s)δ2 ≤ Cδ2.

The similar technique has been used [3][4]. Throughout this paper, we mainly deal with the
case of |ξ| ≥ c1.

By Morozov’s discrepancy principle, in [2] the authors derived a Hölder-type error estimate like
‖fδα(·, s)−f(·, s)‖ = O(Es/Lδ1−

s
L ), δ → 0 under the a-priori bound (1.5) with p = 0 by using Fourier

method fδν (·, s) (Please see Theorem 3.1 in [2]). However, when s = L at which we should be more
interested in, we cannot get any convergence. To overcome the difficulty, usually, a stronger a-priori
bound on the unknown solution should be added, i.e., we should require p > 0 for (1.5) to obtain
the convergence rate at s = L. In all, the authors in [2] has constructed the interior inversion by
Fourier method. In the following, we will construct the interior and boundary boundary inversions
by a spectral regularization method which is more suitable for solving problem (1.3).

1.2 Preliminary on the spectral method

Ill-posed operator equations arise in several contexts and various aspects have been treated in the
literature [1][5][6]. We cannot give here an exhaustive survey. In this paper we are interesting in
solving the solution x† ∈ H1 of linear ill-posed problems by spectral cut-off method

Ax = y, (7)

where A : H1 → H2 is a linear injective, closed operator between infinite-dimensional Hilbert spaces
H1 and H2 with non-closed range R(A). We suppose that yδ ∈ H2 are the noisy data with

‖y − yδ‖ ≤ δ (8)

and known noise level δ.
If we consider the ill-posed problem Kx = y where only noisy data yδ are available, K is a

compact operator with singular system {σn, vn, un}∞n=1, since the ill-posedness is associated with
the small singular values, an obvious idea is to truncate or damp the smaller singular values. That
is the well-known truncated singular value decomposition (TSVD) method. These methods are
simple and effective. In the practical computation, we can implement the spectral cut-off method
by mollification method discovered by Hào [7].

For problem (1.7), most regularization operators can be written in the form,

Rα := gα(A∗A)A∗ (9)

with some function gα satisfying

lim
α→0

gα(λ) =
1

λ
,
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where the operator function gα(A∗A) is well defined via the spectral representation gα(A∗A) =∫ a
0
g(λ)dEλ. Here A∗A =

∫ a
0
λdEλ, {Eλ} denotes the spectral family of the operator A∗A and a is

a constant satisfying ‖A∗A‖ ≤ a with a =∞ if A∗A is unbounded.
Then for the regularization solution with unperturbed data, we have xα := Rαy and x† − xα =

rα(A∗A)x† with rα(λ) = 1− λgα(λ). For example, for spectral cut-off method,

gα(λ) =

{
1
λ , λ ≥ α,
0, λ < α.

(10)

rα(λ) =

{
0, λ ≥ α,
1, λ < α.

(11)

In general, the exact solution x† ∈ X is required to satisfy a so-called source condition, otherwise
the convergence of the regularization method approximating the problem can be arbitrarily slow.
For ill-posed problems, the source condition is chosen as

x† = [ϕ(A∗A)]1/2ω, ‖ω‖ ≤ E, (12)

i.e., x† belongs to the source set

Mϕ,E = {[ϕ(A∗A)]1/2ω, ω ∈ X and ‖ω‖ ≤ E}, (13)

where ϕ(λ) satisfies some properties:
Assumption 1. lim

λ→0
ϕ(λ) = 0 and ϕ(λ) is strict monotonically increasing, ρ(λ) = λϕ−1(λ) is

convex.
For the stable approximate solution of problem (1.7) some regularization technique has to be

applied, which provides regularized approximations xδα = Rδαy
δ with property xδα → x† as δ → 0.

Any operator R : H2 → H1 can be considered as a special method for solving problem (1.7).
the approximate solution to (1.7) is then given by Ryδ. Consider the worst case error ∆(δ,R) for
identifying the solution x† of problem (1.7) from noisy data yδ under the assumptions ‖y− yδ‖ ≤ δ
and x† belongs to a source set Mϕ,E which is defined by

∆(δ,R) = sup{‖Ryδ − x†‖
∣∣x† ∈Mϕ,E , y

δ ∈ H2, ‖y − yδ‖ ≤ δ}. (14)

This worst case error characterizes the maximal error of the method R if the solution x† of problem
(1.7) varies in the set Mϕ,E . An optimal method Ropt is characterized by ∆(δ,Ropt) = infR ∆(δ,R).
It can easily be realized that

inf
R

∆(δ,R) ≥ ω(δ,Mϕ,E), (15)

where ω(δ,Mϕ,E) = sup{‖x‖
∣∣x ∈Mϕ,E , ‖Ax‖ ≤ δ}.

The following theorem and definition can be found in [8].
Theorem 1.1. Let Mϕ,E is given by (1.13), and Assumption 1 be satisfied. If δ

E ∈ σ(A∗Aϕ(A∗A)),
then

ω(δ,Mϕ,E) = E

√
ρ−1(

δ2

E2
), (16)
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where ρ is given by ρ(λ) = λϕ−1(λ).
Definition 1.1. Let Assumption 1 be satisfied. Any regularization method Rδα for problem (4.1)

with noisy data is called

(i) optimal on the set Mϕ,E if ‖xδα − x†‖ ≤ E
√
ρ−1( δ

2

E2 );

(ii) order optimal on the set Mϕ,E if ‖xδα − x†‖ ≤ cE
√
ρ−1( δ

2

E2 ) with c ≥ 1.

2 Morozov’s discrepancy principle for the spectral method

Now we prove some estimates for the spectral regularization method under the a-posteriori parameter
choice rule.

By Morozov’s discrepancy principle, we have a choice rule R

d(α) := ‖Axδα − yδ‖ = τδ, (17)

where τ > 1. Via the definition of xδα, we have

‖Axδα − yδ‖ = ‖Agα(A∗A)A∗yδ − yδ‖ ≤ sup
λ∈σ(A∗A)

|1− λg(λ)|‖yδ‖ ≤ ‖yδ‖.

here it requires ‖yδ‖ ≥ τδ, when α → 0, d(α) → 0; when α → ∞,d(α) → ‖yδ‖. According to the
continuity of d(α) with respect with α, the parameter α chosen by the R exists.

First we have

‖xδα − xα‖ = ‖gα(A∗A)A∗yδ − gα(A∗A)A∗y‖ ≤ sup
λ∈σ(A∗A)

|
√
λgα(λ)|‖gδ − g‖ ≤ δ√

α
. (18)

Proposition 2.1. Let x† ∈Mϕ,E , Assumption 1 is satisfied, if α is chosen by the rule R, then
there holds

‖xα − x†‖ ≤ (τ + 1)ω(δ, A,Mϕ,E). (19)

Proof. According to the expression of xα, it yields

x† − xα = x† −Rαy = (I −RαA)x†,

since x† = [ϕ(A∗A)]1/2v, so (I−RαA)[ϕ(A∗A)]1/2x† = [ϕ(A∗A)]1/2(I−RαA)v. Let w = (I−RαA)v,
then ‖w‖ ≤ ‖I −RαA‖‖v‖ ≤ ‖v‖ ≤ E. Noting the definition of Mϕ,E , we obtain

(I −RαA)x† ∈Mϕ,E .

At the same time, by the rule R,

‖A(I −RαA)x†‖ = ‖y −ARαy‖ ≤ ‖(I −ARα)(yδ − y)‖+ ‖(I −ARα)yδ‖
≤ δ + τδ = (1 + τ)δ.
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By the definition of ω(δ, A,Mϕ,E), there holds

ω(δ, A,Mϕ,E) := sup ‖x‖
∣∣x ∈Mϕ,E , ‖Ax‖ ≤ δ,

we have
‖(I −RαA)x†‖ ≤ (τ + 1)ω(δ, A,Mϕ,E),

i.e.
‖x† − xα‖ ≤ (τ + 1)ω(δ, A,Mϕ,E). (20)

Proposition 2.2. Let x† ∈ Mϕ,E , and let Assumption 1 is satisfied, if α is chosen by the rule
R, then

δ√
α
≤ E

(τ − 1)

√
ϕ(α). (21)

Proof. Let Gα = RαA = ARα, then d(α) = ‖(I −Gα)yδ‖, we get

τδ = ‖(I −Gα)yδ‖ ≤ ‖(I −Gα)y‖+ ‖(I −Gα)(yδ − y)‖,
≤ ‖(I −Gα)y‖+ δ.

At the same time, there holds

‖(I −Gα)y‖ = ‖(I −Gα)Ax†‖ = ‖(I −Gα)A[ϕ(A∗A)]1/2v‖
≤ sup
λ∈σ(A∗A)

|(1− λgα(λ))
√
λϕ(λ)|E ≤

√
αϕ(α)E.

Hence
δ√
α
≤ E

(τ − 1)

√
ϕ(α).

holds.
Theorem 2.1. Let x† ∈ Mϕ,E ,and Assumption 1 is satisfied, if α is chosen by the rule R, we

have

‖xδα − x†‖ ≤ cE
√
ρ−1(

δ2

E2
), (22)

where when 1 < C ≤ 2, the constant c = τ + 1 + 1
τ−1 ; when τ > 2, the constant c = τ + 2.

Proof. By (2.5), we have

ϕ−1(
(τ − 1)2δ2

E2α
) ≤ α.

As ρ(λ) = λϕ−1(λ), it yields ρ( (τ−1)2δ2
E2α ) ≤ (τ−1)2δ2

E2α . Because ρ is monotonic, when 1 < τ ≤ 2, we
have

δ√
α
≤ E

τ − 1

√
ρ−1(

(τ − 1)2δ2

E2
) ≤ E

τ − 1

√
ρ−1(

δ2

E2
). (23)
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when τ > 2,because ϕ−1 is monotonic, we obtain

ϕ−1(
δ2

E2α
) ≤ ϕ−1(

(τ − 1)2δ2

E2α
) ≤ α.

Similarly

δ√
α
≤ E

√
ρ−1(

δ2

E2
). (24)

By using the Proposition 2.1 and (2.2), we have

‖x† − xδα‖ ≤ ‖x† − xα‖+ ‖xα − xδα‖
≤ (τ + 1)ω(δ, A,Mϕ,E).

By Theorem 1.1, we obtain the (2.6).

3 Spectral regularization for problem (1.3)

Now in order to apply the spectral regularization method for problem (1.3), we formulate problem
(1.3) as an operator equation in the frequency domain:

A(s)f̂ := a−1(ξ, s)f̂(ξ, s) = ĝ(ξ),

where A(s) : L2(R) → L2(R) is a multiplication operator. Obviously A(s) = a−1(ξ, s), and the
adjoint operator of A(s) is A∗(s) = a−1(ξ, s), where the symbol Π̄ denotes the complex conjugate
of Π. Therefore A∗A(s) = |a−1(ξ, s)|2 = |a(ξ, s)|−2. In this section, we deal with problem (1.3) for
two cases separately:

Case I (the case of the interior inversion): p = 0 in (1.5).
Case II(the case of the boundary inversion): p > 0 in (1.5).
For Case I, the authors in [2] has used the Fourier method for constructing the solution f(ω, s)

with 0 ≤ s < L and they obtained the Hölder-type error estimates. Now we investigate the spectral
method for two cases.

First we can write the spectral regularization according to (1.10):

f̂δα(ξ, s) =

{
a(ξ, s)ĝ(ξ), |a(ξ, s)| ≤ 1√

α
,

0, else.
(25)

Generally, the expression of a(ξ, s) may be too complicate. However, by (1.6), the spectral method
may be interpreted as the Fourier method. According to |a(ξ, s)| ≤ 1√

α
we have C1 exp(sφ(|ξ|)) ≤

1√
α

. This implies that |ξ| ≤ φ−1( 1
s ln( 1

C1
√
α

)), where φ−1(·) is the inverse function of φ(·). Thus

(3.1) is the Fourier method with the following form:

f̂δα(ξ, s) =

{
a(ξ, s)ĝ(ξ), |ξ| ≤ φ−1( 1

s ln( 1
C1
√
α

)),

0, else.
(26)
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Therefore, the regularization parameter ν in Fourier method [2] is related to the regularization
parameter α in spectral regularization via ν = φ−1( 1

s ln( 1
C1
√
α

)). However, via Morozov’s discrepancy

principle for choosing regularization parameter, the process of proof for error estimate is easier
within the framework of spectral regularization.

In order to obtain the explicit expression of the error bound, we need to know the expression
ϕ(·) for obtaining the function ρ−1(·) in (2.5).

3.1 Interior inversion

In this subsection, we note that p = 0 in (1.5) and we want to recover the solution f̂(ξ, s) with
0 ≤ s < L. First we use the equality

f̂(ξ, s) =
a(ξ, s)

a(ξ, L)
f̂(ξ, L).

Now (1.5) reads

‖f̂(ξ, L)‖2 = ‖a(ξ, L)

a(ξ, s)
f̂(ξ, s)‖2 ≤ E2.

Denote the sets

M1 = {f̂(ξ, s) ∈ L2
∣∣‖a(ξ, L)

a(ξ, s)
f̂(ξ, s)‖2 ≤ E2}. (27)

M = {f̂(ξ, s) ∈ L2
∣∣‖C1

C2
2

|a(ξ, s)|
L−s
s f̂(ξ, s)‖2 ≤ E2}. (28)

In fact, by A∗A(s) = |a−1(ξ, s)|2 = |a(ξ, s)|−2, M is equivalent to M2 given by in the form of (1.13)

M2 = {f̂(ξ, s) ∈ L2
∣∣‖[ϕ(A∗A(s))]−

1
2 f̂(ξ, s)‖2 ≤ E2}, (29)

where

ϕ(λ) =
C4

2

C2
1

λ
L−s
s . (30)

Now we only need to show that every element from M1 belongs to the set M . For any element
f̂(ξ, s) ∈M1, we have ∫

|a(ξ, L)

a(ξ, s)
|2|f̂(ξ, s)|2dξ ≤ E2. (31)

By (1.6), this implies ∫
|C1

C2
exp((L− s)φ(|ξ|))|2|f̂(ξ, s)|2dξ ≤ E2. (32)

On the other hand, for any element f̂(ξ, s) ∈M , we have two-side estimates∫
C2

1

C4
2

|C1 exp((L− s)φ(|ξ|))|2|f̂(ξ, s)|2dξ ≤
∫
C2

1

C4
2

|a(ξ, s)|
2(L−s)

s |f̂(ξ, s)|2dξ

8
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≤
∫
C2

1

C4
2

|C2 exp((L− s)φ(|ξ|))|2|f̂(ξ, s)|2dξ ≤ E2.

Thus we have shown that every element from M1 belongs to the set M = M2. Likewise, we can also
show that every element from M0 belongs to the set M1 by constructing another a set M0 similar
to M . We have another ϕ(·) which differs from (3.6) only by a constant factor. Now we summarize
what we have:

Conclusion 1. If the a-priori bound (1.5) with p = 0 holds, for problem (1.3), the function

ϕ(·) in the source set (3.5) has the form of ϕ(λ) = γλ
L−s
s with γ is a constant which only depends

on C1 and C2. Thus, the function ρ(λ) = λϕ−1(λ) = c2λ
L
L−s and ρ−1(λ) = c3λ

L−s
L . Therefore for

problem (1.3) for solving f̂(ξ, s), the optimal convergence order for error estimates is given by

E(δ/E)
L−s
L = E

s
L δ

L−s
L . (33)

3.2 Boundary inversion

In this subsection, we note that p > 0 in (1.5) and we want to recover the solution f̂(ξ, L). Now
(1.5) with p > 0 reads

‖f̂(ξ, L)‖2p = ‖(1 + ξ2)pf̂(ξ, L)‖2 ≤ E2.

Denote the sets
M3 = {f̂(ξ, L) ∈ L2

∣∣‖(1 + ξ2)pf̂(ξ, L)‖2 ≤ E2}. (34)

M4 = {f̂(ξ, L) ∈ L2
∣∣‖[φ−1(

γ0
2L

ln([A∗A(L)]−1))]pf̂(ξ, L)‖2 ≤ E2}, (35)

where the φ−1(·) denotes the inverse function of φ(·) and γ0 is positive constant depends on C1, C1.
Similar to above subsection, we can prove that every element from M3 belongs to the set M4. Thus
we can obtain the expression of ϕ(λ):

ϕ(λ) = [φ−1(
γ0
2L

ln([λ]−1))]−2p. (36)

By a elementary calculation, it yields

ρ−1(λ) = [φ−1(c̃ ln([λ]−1))]−2p, (37)

where c̃ is a constant depends on γ0, L.
Conclusion 2. If the a-priori bound (1.5) with p > 0 holds, the optimal convergence order for

solving f̂(ξ, L) is given by

[φ−1(c̃ ln(E2/δ2))]−p. (38)
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4 Applications

Now we give some applications of theorem 2.1. Throughout this section, the C̃, C̃1, C̃2 are the
positive constants which are not dependent on δ and E.

Exmaple 4.1. Consider the sideways heat equation:

ut − uxx = 0, x > 0, t > 0,

u(x, 0) = 0, x > 0,

u(L, t) = g(t), t > 0,

u(x, t)|x→∞ bounded, (39)

where g(t) ∈ L2 is given approximately by gδ(t) ∈ L2. Here we want to determine the solution
u(x, t) for 0 ≤ x < 1. As usual, we assume that the a-priori bound ‖u(0, ·)‖p ≤ E holds.

The solution of problem (4.1) can be expressed as

u(x, t) =
1√
2π

∫ ∞
−∞

eiξte(L−x)
√
iξ ĝ(ξ)dξ. (40)

From (4.2), we have

û(ξ, t) = e(L−x)
√
iξ ĝ(ξ). (41)

Thus the symbol of pseudodifferential operator is given by

a(ξ, x) = e(L−x)
√
iξ. (42)

It yields |a(ξ, x)| = exp((L− x)
√
|ξ|/2).

Now we take v = t, s = L− x, φ(|ξ|) =
√
|ξ|/2, C1 = C2 = 1 and let f(v, s) = u(x, t), fδα(v, s) =

uδα(x, t) where uδα(x, t) is the spectral regularization solution for problem (4.1). In this example, we
have φ−1(y) = 2y2. Therefore, according to (2.5) (3.9), we have the error estimate for the spectral
method at 0 < x < L

‖uδα(x, ·)− u(x, ·)‖ ≤ C̃E1−x/Lδx/L. (43)

Similarly according to (2.5)(3.14), we have the error estimate for the spectral method at x = 0

‖uδα(L, ·)− u(L, ·)‖ ≤ C̃[ln(E/δ)]−2p. (44)

Exmaple 4.2. Consider the Cauchy problem of the Laplace’s equation:

uxx + uyy = 0, x ∈ (0, L), y ∈ R,
u(0, y) = g(y), y ∈ R,
ux(0, y) = 0, y ∈ R, (45)

where g(y) ∈ L2 is given approximately by gδ(y) ∈ L2. Here we want to determine the solution
u(x, y) for 0 ≤ x < L. As usual, we assume that the a-priori bound ‖u(L, ·)‖p ≤ E holds.
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The solution of problem (4.7) can be expressed as

u(x, y) =
1√
2π

∫ ∞
−∞

eiξy cosh(xξ)ĝ(ξ)dξ. (46)

From (4.8), we have
û(ξ, x) = cosh(xξ)ĝ(ξ). (47)

Thus the symbol of pseudodifferential operator is given by

a(ξ, x) = cosh(xξ). (48)

It yields |a(ξ, x)| = cosh(xξ) which satisfies

1

2
ex|ξ| ≤ |a(ξ, x)| ≤ ex|ξ|. (49)

Thus, we have φ(y) = y. Now we take v = y, s = x,C1 = 1/2, C2 = 1 and let f(v, s) =
u(x, y), fδα(v, s) = uδα(x, y) where uδα is the spectral regularization solution for problem (4.7). In
this example, we have φ−1(y) = y. Therefore, according to (2.5) (3.9), we have the error estimate
for the spectral method at 0 < x < L

‖uδα(x, ·)− u(x, ·)‖ ≤ C̃Ex/Lδ1−x/L. (50)

Similarly according to (2.5)(3.14), we have the error estimate for the spectral method at x = L

‖uδα(L, ·)− u(L, ·)‖ ≤ C̃[ln(E/δ)]−p. (51)

Exmaple 4.3. Consider the backward heat conduction problem:

ut − uxx = 0, t ∈ (0, T ), x ∈ R,
u(x, T ) = g(x), y ∈ R (52)

where g(x) ∈ L2 is given approximately by gδ(x) ∈ L2. Here we want to determine the solution
u(x, t) for 0 ≤ t < T . As usual, we assume that the a-priori bound ‖u(·, 0)‖p ≤ E holds.

The solution of problem (4.14) can be expressed as

u(x, t) =
1√
2π

∫ ∞
−∞

eiξxeξ
2(T−t)ĝ(ξ)dξ. (53)

From (4.15), we have

û(ξ, t) = eξ
2(T−t)ĝ(ξ). (54)

Thus the symbol of pseudodifferential operator is given by

a(ξ, x) = eξ
2(T−t). (55)
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Thus, we have φ(y) = y2, y > 0. Now we take L = T, v = x, s = T − t, C1 = C2 = 1 and let
f(v, s) = u(x, t), fδα(v, s) = uδα(x, t) where uδα is the spectral regularization solution for problem
(4.14). In this example, we have φ−1(y) =

√
y. Therefore, according to (2.5) (3.9), we have the

error estimate for the spectral method at 0 < t < T

‖uδα(x, ·)− u(x, ·)‖ ≤ C̃E1−t/T δt/T . (56)

Similarly according to (2.5)(3.14), we have the error estimate for the spectral method at t = 0

‖uδα(·, 0)− u(·, 0)‖ ≤ C̃[ln(E/δ)]−p/2. (57)

Example 4.4. Consider a two-layer body that consists of the first layer in 0 ≤ x ≤ l1 and the
second layer in l1 ≤ x ≤ l2. The two layers are in perfect thermal contact at x = l1.

Let k1, k2 > 0 be the thermal conductivities and α1, α2 > 0 be the thermal diffusivities of
the first and the second layer, respectively. The temperature distributions in the first and the
second layers, denoted by u1(x, t) and u2(x, t) respectively, satisfy the following partial differential
equations in the two domains D1 := {x

∣∣0 ≤ x ≤ l1} and D2 := {x
∣∣l1 ≤ x ≤ l2}:

∂u1
∂t
− α1

∂2u1
∂x2

= 0, 0 < x < l1, t > 0, (58)

∂u2
∂t
− α2

∂2u2
∂x2

= 0, l1 < x < l2, t > 0, (59)

subject to the initial and boundary conditions

u1(x, 0) = u2(x, 0) = 0, 0 < x < l2, (60)

u2(l2, t) = g(t), t > 0, (61)

∂u2
∂x

(l2, t) = 0, t > 0, (62)

u1(l1, t) = u2(l1, t), t > 0, (63)

k1
∂u1
∂x

(l1, t) = k2
∂u2
∂x

(l1, t), t > 0. (64)

We suppose that the exact data g ∈ L2(0,∞) and thus it is natural to assume also that, for any
fixed x ∈ [0, l2], the solutions u1(x, ·), u2(x, ·) belong to L2(0,∞). The inverse Cauchy problem is
then to determine the solutions u1(x, t) for 0 ≤ x ≤ l1 in the space L2(0,∞) from the given data
g(t) ∈ L2(0,∞) and the insulated condition at the accessible boundary x = l2. In practice, the
measurement of g contains error that gives gδ(·) ∈ L2(0,∞) satisfying

‖gδ(·)− g(·)‖ ≤ δ, (65)

where the constant δ > 0 represents a bound on the measurement error and ‖ · ‖ denotes the
L2−norm. Assume that there exists a constant E > 0 so that the following a-priori bound exists
for the solution u1 of the problem:

‖u1(0, ·)‖p ≤ E. (66)
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For 0 ≤ x ≤ l1, we have [9]

û1(x, ξ) = cosh(

√
iξ

α1
(l1 − x)) cosh(

√
iξ

α2
(l2 − l1))ĝ(ξ)

+
k2
√
α1

k1
√
α2

sinh(

√
iξ

α1
(l1 − x)) sinh(

√
iξ

α2
(l2 − l1))ĝ(ξ). (67)

The solutions u1(x, t) can be recovered from taking the inverse Fourier transform. Denote

κ :=
k2
√
α1

k1
√
α2
, (68)

a(x, ξ) := cosh(

√
iξ

α1
(l1 − x)) cosh(

√
iξ

α2
(l2 − l1)) + κ sinh(

√
iξ

α1
(l1 − x)) sinh(

√
iξ

α2
(l2 − l1)), (69)

Equations (2.27) can then be formulated in operator equations as follow:

û1(x, ξ) = a(x, ξ)ĝ(ξ). (70)

For a(x, ξ), we have [9] the following inequality: for 0 < x < l1, then

C̃1e
(l1−x)

√
|ξ|
2α1 e

(l2−l1)
√
|ξ|
2α2 ≤ |a(x, ξ)| ≤ C̃2e

(l1−x)
√
|ξ|
2α1 e

(l2−l1)
√
|ξ|
2α2 . (71)

Now we take v = t, L = l1√
2α1

+ l2−l1√
2α2

, s = L − l1−x√
2α1

+ l2−l1√
2α2

= x√
2α1

, φ(|ξ|) =
√
|ξ| and let

f(v, s) = u1(x, t), fδα(v, s) = uδ1,α(x, t) where uδ1,α(x, t) is the spectral regularization solution for
problem (4.20)-(4.26). In this example, we have φ−1(y) = y2. Therefore, according to (2.5) (3.9),
we have the error estimate for the spectral method at 0 < x < L

‖uδ1,α(x, ·)− u(x, ·)‖ ≤ C̃δ

x√
2α1

l1√
2α1

+
l2−l1√

2α2 E

1−
x√
2α1

l1√
2α1

+
l2−l1√

2α2 . (72)

Similarly according to (2.5)(3.14), we have the error estimate for the spectral method at x = 0

‖uδ1,α(0, ·)− u(0, ·)‖ ≤ C̃[ln(E/δ)]−2p. (73)

It is worthy of noting that the radial inverse heat conduction problem [10], the deblurring
problem [11-12], the Cauchy problem for Helmholtz equation [3-4], the IHCP with variable coefficients
[13] can be solved by the spectral regularization methods. There are many other ill-posed problems
which we cannot give here an exhaustive survy.
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5 Concluding Remark

Numerical solutions for many ill-posed problem can be recast as the numerical computation of a
class of pseudodifferential operators. In this paper, for the numerical computation of a class of
pseudodifferential operators, we pointed that the Fourier method provided in [2] can be fitted into
the framework of regularization theory and the Fourier method can be considered as the spectral
regularization method. Under the principle of Morozov’s discrepancy, we derived the error bound for
the numerical computation of a class of pseudodifferential operators. Relative to [2], our proposed
methods and results are more general. For example, for our methods the adaptive balance principle
[14] for choosing regularization parameter in the form of the operator equation can also be applied,
however for the Fourier method the balance principle is not suitable.

References

[1] H. W. Engl, M. Hanke and A. Neubauer Regularization of Inverse Problems, Kluwer Academic
Publisher, Dordrecht Boston London, 1996.

[2] C. L. Fu, Y. X. Zhang, H. Cheng and Y. J. Ma, The a posteriori Fourier method for solving
ill-posed problems, Inverse Probl. 28(2012)095002(26pp).

[3] X.T. Xiong and C.L. Fu. Two approximate methods of a Cauchy problem for the Helmholtz
equation, Comput. Appl. Math. 26(2007)285-307.

[4] T. Reginska and U. Tautenhahn, Conditional Stability Estimates and Regularization with
Applications to Cauchy Problems for the Helmholtz Equation, Numer. Funct. Anal. Optim.
30(9-10)(2009)1065-1097.

[5] M. T. Nair and U. Tautenhahn, Lavrentiev Regularization for Linear Ill-Posed Problems under
General Source Conditions, Z. Anal. Anw. 23(2004)167-185.

[6] M. T. Nair, Linear operator equations: Approximation and Regularization, World Scientific,
2009.
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[13] D. N. Hào and H.J. Reinhardt, On a sideways parabolic equation, Inverse Problems 13(1997)
297-309.

[14] S. Pereverzev and E. Shock, On the adaptive selection of the parameter in regularization of
ill-posed problems, SIAM J. Numer. Anal. 75(2006) 2060-2076.

15

http://www.ijmes.com/

	Introduction
	Previous work on Fourier method
	Preliminary on the spectral method

	Morozov's discrepancy principle for the spectral method
	Spectral regularization for problem (1.3)
	Interior inversion
	Boundary inversion

	Applications
	Concluding Remark

