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Abstract: Hebrews 1:3 states that He is “. . . sustaining all things by his

powerful word.” The General Intelligent Design (GID) (mathematical) model

establishes the scientific rationality of this statement.

1. Introduction.

In 1963, Abraham Robinson applies the original form of nonstandard analysis to

the semantics of a formal language (Robinson, 1963). In particular, he employs a set

of individuals U , of an appropriate cardinality, and a set of first-order (lower predicate

calculus) statements K that hold for members of U . He then generates a nonstandard

model U ′, for which the K and other statements not members of K hold.

Relative to a first-order predicate language L, he states:

We now suppose that certain subsets of U are regarded as the constituents

of a language L of a first order predicate calculus. That is to say, there

are certain disjoint sets of individuals of U , of adequate cardinal numbers,

which serve as brackets, commas, connectives (∼, ∧, and ∨), quantifiers

(∀ and ∃), variables, individual constants, relations and functions of L. .

. . Going further, we suppose that the terms and well-ordered formula

(wff) of L also constitute subsets of U (“L-terms”, “L-wff”) (Robinson,

1963, p. 90).

Robinson is viewing the members of such sets as the informal objects investigated

within Mathematical Logic. To form an L-wff an individual needs to follow a detailed

informal procedure. Thus, the sets so obtained are informally defined. This leads to

further informal definitions for various relations relative to such a formation process.

He then considers the nonstandard extension U ′ of the U . The model, in this case,

needs to be a first-order model. There are two ways to gain information from this

model. The most direct is by considering a direct first-order translation or by use of

the notion of an interpretation. The last sentence in the following is such a translation.

Passing to U ′, we see that the relations which in U define the various sets

of L-symbols and L-formula, define corresponding sets in U ′. . . . The

extended language will be denoted by L′and, accordingly, we shall refer

to its variables, connectives, and so on, as L′-variables, L′-connectives,

etc. Now let F and F ′ be the sets of L-wff and L′-wff, respectively. Then

F ⊆ U, F ′ ⊆ U ′ and F is a proper subset of F ′. . . . Thus, for every
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non-standard natural number l in U ′ there exists an L′-sentence whose

length exceeds l (Robinson, 1963, p. 91).

Robinson applies these notions to semantics and I have no doubt that he con-

ceptually considers L′-sentences as having the same type of symbolic constituents and

order properties as those of the L-sentences. However, as pointed out by Mendelson

(1987, p. 28), mathematical logic modeling only requires members of a language to be

“arbitrary objects rather than just linguistic objects.” Thus, the Robinson approach

can be viewed on a technical level as Mendelson states. On one hand, a language is

composed of actual physical entities that satisfy various relations and, on the other

hand, they are merely arbitrary “abstract” objects, such as sets or individuals, that

satisfy corresponding abstract relations. The abstract entities are then interpreted in

terms of the informal notions.

Applying the more recent developments in nonstandard analysis (Herrmann, 1978-

93), in particular the now customary polysaturated enlargement superstructure ap-

proach, the external cardinality of such Robinson L′-sentences can be greater than

the cardinality of the entire superstructure. Thus, relative to the presently accepted

physical universe in which we dwell, such L′-sentences are not physically expressible

completely. They are conceptual, but they are physical-like in character for the GGU-

model substratum.

How does one describe such sentences? A basic approach to the predicate cal-

culus is to assume a denumerable collection of variables, and a finite or denumer-

able set of predicates which leads to sentences of arbitrary finite length employing

an arbitrary number of finite non-repeated symbolic forms (Mendelson, 1987, p. 55).

Consider one-place predicates Pi(x). Then conceptually, for any natural number n,

∃x1 . . .∃xn(P1(x1) ∨ . . . ∨ Pn(xn)) is an L-wff. According to Robinson, this statement

implies that there is an exactly similar L′-wff. Using “new” predicate symbols, one

informally conceives of this as the form ∃x1 . . .∃xl(P1(x1)∨ . . .∨Pl(xl)). But, can such

an L′-statement be more formally represented?

In Herrmann (1978-1993), the notions of universal logic are applied to a general

language L. Formal languages form a proper subset of L. A “word” is a finite collection

of symbols or images combined in a specific observable manner. It is also called a

”readable sentence.” Words are combined to form other words via a semigroup operator

introduced, informally, by Markov. With the addition of the empty word, this becomes

a monoid.

The collection of all “words,” W′, constructed from L is coded via an informal

bijection i:W′ → IN. Two approaches are now employed, this original coded approach

or a Robinson-styled approach, where the standard language is considered as a set of

set-theoretic atoms (Herrmann, (2014a)). In most cases, the results are independent

from which approach is applied and in Herrmann (2013) a “generic” symbol is employed
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as a representation for either choice. (In Herrmann (1978-1993), the notation W ′ is

used for the W′.)

In the coded approach, the coded entities take on the same names as their domain

counterparts. As done by Robinson, entities associated with the selected set of atoms

also take on the appropriate interpreted names. For this article, the original approach

using the informal coding can be employed with the understanding that it directly

corresponds to the Robinson approach. The function i simply acts like a “translator”

and a strict meta-world comparative interpretation relates the nonstandard members

of the formal model directly to members of W′ via the inverse of i. There is a nat-

ural correspondence between the informally defined relations on L and their formal

standard superstructure counterparts. However, the function i itself is not considered

as a member of the superstructure. Thus, members of a [f ] ∈ ∗L − L need not be

translatable into words taken from L. This fact is highly significant for the GID-model

interpretation.

The modeling is based upon informal set-theoretic definitions and relations, which

are then embedded into a formal standard set-theoretic superstructure. This structure

is then embedded into a non-standard structure. The rational interpretation follows by

relating, in a strict manner using a fixed set of terms, entities within the nonstandard

structure to those in the standard structure that have the same properties and often the

same “names” as the original informal entities to which they directly correspond. The

symbolic form indicates whether the “language” is the informal, embedded standard

or nonstandard although the term “language” is used in these three cases. The GID-

model comparative interpretation employs informal standard terminology and for the

predicted nonstandard entities a modified standard terminology.

As indicated by [f ] above, this coding is further refined via equivalence classes that

contain finitely many partial sequences that model the various finite orderings of the

symbol strings that produce the exact same word-element. Each equivalence class [f ]

contains two special partial sequences, fn, f0. The partial sequence fn is interpreted

as an ordered “alphabet” composition of the word and f0 is the numerical code for

the entire word. Such words are combined via an operator ◦, which, as a monoid, is

formally defined in Herrmann (2013, p. 6-7). Due to a consistent interpretation relative

to the standard superstructure, the actual origin of the numerical values for each of the

partial sequences is not significant since this is an analogue model for the consistent

behavior of interpreted entities.

These equivalence classes yield a mathematical model that employs only the nat-

ural numbers as its basic component and yields more formalizable statements for the

purpose of transfer to the nonstandard model. For a standard language L, this yields

the nonstandard coded “language” ∗L. Within this language, there are entities that

“behave” like “alphabet” symbols and correspond to the necessary additional entities

that correspond the necessary portions of . . . ∨ Pl(xl) to elements in ∗L− L.

3



Various relations that describe the properties of language-elements are, in gen-

eral, informally defined. As mentioned, when embedded into the nonstandard model,

they are interpreted via a language similar to the informal language that defines an

original coded entity. Great significance is placed upon the formal transfer to ∗L of

formal first-order statements relative to L. It is through the use of meta-world concepts,

interpretation and comparison that additional information is gained.

2. Deduction.

For the GID-model portion of the GGU-model, mental activity corresponds to

linguistic practices relative to a general language. The modern methods of “star”

transform do not directly yield new information about the relation between the non-

standard objects and the standard ones. All such acceptable investigations employ

meta-mathematics, when the model is viewed from the meta-world. All of the rules

that govern formal deduction are informally expressed. An actual deduction can be

difficult to obtain. It has been shown that given the standard set of rules and any

natural number n, that there is a “logical theorem” (a tautology) that takes more than

n-steps to establish formally at the last step. Of course, each step in a formal “proof” is

a deduction. The informal rules involve recognizing, indeed, searching for word-forms,

choices and application of a few specific substitution procedures. It need not be the

case that the most general collection of these rules, unless a coding is accepted, are

considered as completely expressible in a formal first-order language.

The GGU-model, even in the secular case, employs procedures that mimic de-

ductive processes. However, for the GGU-model, the rules that yield deductions

are much easier to apply since they are restricted to but a few distinct linguistic

patterns. This simplification also leads to other modes of presentation. For the

GGU-model and its GID-model interpretation, the basic informal pattern, rela-

tive to simple words, is a collection of hypotheses of the form A, and “If A, then

B.” where distinct A, B ∈ L. Since this is not ancient Greek, where no spacing was

used between symbol strings, and to correspond to the actual Markov word-forms,

a “spacing” symbol ||| is used for this general language approach. This yields the

form “If|||A, |||then|||B.” Then these are gathered into a standard but simplified form

of presentation (I) A|||If|||A, |||then|||B.|||If|||B, |||then|||C.|||If|||C, |||then|||D.||| · · · and

represents a finite length hypothesis, where the A,B,C,D . . . are distinct members of

L. For the GGU-model, a developmental and instruction paradigm so presented has

a “length” as measured by the increasing sequence of natural numbers. However, for

application to “formal deduction” this word is considered as decomposed into the col-

lection {A, If|||A, |||then|||B., If|||B, |||then|||C., If|||C, |||then|||D., . . .}.

The rule of inference is modus ponens. A general description for this simplified

deductive process is: Take A and find the “If A, then B.” statement in the set of hy-

potheses. Then write down as a deductive step the B entity. Now repeat this process
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but start with the B, and so forth. This indicates the actual mental activity required

in order to achieve the required deductive results. This generates an informal conse-

quence operator (operation) that corresponds to a formal standard operator relative

to the L. In Herrmann (1978-93), a deduction algorithm is viewed relative to a corre-

sponding consequence operator, which does not itself display the algorithm. A more

detailed process, the logic-system, that produces this operator has been introduced

(Herrmann, (2001, p. 94)). This approach allows for a more formalized presentation.

Logic-systems are generally informally defined. They are very general in na-

ture and are used to investigate general languages and universal logics. For the

above example, except for the additional set-theoretic details, this may seem, at

first, not to be a great improvement. But, such logic-systems have varying pre-

sentations. The hypotheses form a u-ary entity, that is a set. For this basic ex-

ample, (II) {A, If|||A, |||then|||B., If|||B, |||then|||C., If|||C, |||then|||D., . . .} which di-

rectly corresponds to the word (I). Then the rules of inference form a collection of 3-

tuples {(A, If|||A, |||then|||B.,B), (B, If|||B, |||then|||C.,C), . . .}, relative to the distinct

elements A, B, C, . . . taken from a general language L. Independent from how one

mathematically models a general language and universe logic, the actual language el-

ements taken from L are those expressed by statements such as (I) or corresponding

members of sets such as the set of hypotheses in (II).

The refined mathematical model is, however, based upon the logic-system (III)

{A} and the collection {(A,B), (B,C), . . .}. The logic-system algorithm states: Using

the u-ary entities or a deduced entity, find in the additional collection of n-tuples,

n > 1, the first n − 1 coordinates. Then the nth coordinate is the one deduced and

can be used for further deductions. Notice that using this rule for deduction (II) yields

A, B, C, . . . in the indicated order. Using the “simpler” (III) logic-system, which does

not include a mimic for modus ponens, the same “deduced” results are obtained in the

same order.

In Herrmann, (2013), a slight modification to (III) and the algorithm was intro-

duced. In this special case, the algorithm is further set-theoretically simplified and, as

such, it is more easily characterized. This is done only for set-theoretic convenience and

corresponding simpler set-theoretic expressions. It is the algorithm employed for cer-

tain recent refinements and yields the same results as the propositional modus ponens

process applied to restricted linguistic patterns. However, the GID-model interpreta-

tion for the predicted results employs the strict terminology that is employed for the

basic informal pattern.

3. Ultrawords.

In Herrmann (2013, p. 25), the following statement is found “Consider an appro-

priate (q, r), x, a, b and any λ ∈ IN∞. There is an ultra-logic-system ∗Λ(q,r)(x, λ) and
∗A(( ∗Λ(q,r)(x, λ), { ∗F

(q,r)
ν,γ,λ(a, b)})).”
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The specialized notation for this expression can be suppressed when an interpreta-

tion is rendered. The symbols (q, r) indicate the type of universe being generated. The

{ ∗F
(q,r)
ν,γ,λ(a, b)} behaves like a single hypothesis, and ∗Λ(q,r)(x, λ) behaves like the (III)

binary system. The ∗A behaves like the logic-system algorithm. This all corresponds

to the form (I) and the separated (II) form and basic modus ponens deduction when

interpreted. In each case, for the GID-model and mental-like activity, ∗A represents

that of an higher-intelligent agent. This agent’s mental activity is “greater than” any

form of “infinity” that is set-theoretically definable (Herrmann, (2014b)).

The standard coded language L ⊂ ∗L and ∗A(( ∗Λ(q,r)(x, λ), { ∗F
(q,r)
ν,γ,λ(a, b)})) =

D ⊂ ∗L and, depending upon the components employed, D is either a hyperfinite

developmental or instruction paradigm. The ∗A generates these paradigms in the

appropriate order that, at the least, yields the step-by-step generation of a (q, r) type

universe.

For notational simplicity, let ω < ξ, ω, ξ ∈ ∗
IN and the hyperfinite ordered D =

{Di | ω ≤ i ≤ ξ}, where ω, ξ depend upon the type of (q, r) universe being considered.

Each Di = [di] ∈
∗L. Let f0(0) = i(&). Assume that the symbol coded i(&) is not

used to represent a symbol in any of the [di]. Via the properties of ∗L there exists an

entity W ∈ ∗L of the form [dω] ◦ [f0] ◦ [dω+1] ◦ [f0] ◦ · · · ◦ [f0] ◦ [dξ−1] ◦ [f0] ◦ [dξ] =

W. The W is an ultraword and portions can be decoded and directly related to

linguistic expressions within the standard language L. For the strict interpretation

applied to ∗L, this ultraword corresponds to the symbolic form Aω& · · ·&Aξ taken

from a generalized first-order propositional calculus, where the individual conjuncts

Ai = [di] are *deducible by an higher-intelligence.

4. The Participator Universe.

Note: In this section, the foundations for the participator universe have been com-

pletely altered and this new approach replaces the corresponding entity found in the

original Section 9 in Herrmann, (2013-08-23).

For the GGU-model, one of the most difficult requirements is to include the con-

cept of the “participator” universe. As stated at the May 1974 Oxford Symposium in

Quantum Gravity, Patton and Wheeler describe how the existence of human beings

alters the universe to various degrees. “To that degree the future of the universe is

changed. We change it. We have to cross out that old term ‘observer’ and replace it

with the new term ‘participator.’ In some strange sense, the quantum principle tells

us that we are dealing with a participator universe.” (Patton and Wheeler (1975, p.

562).) This aspect of the GGU-model is only descriptively displayed in section 4.8 in

Herrmann (2002). It is now possible to obtain, in a somewhat more formal manner, the

collection of universes that satisfies this participator requirement. For simplicity and

for our universe, it is assumed in this section that a single-complexity type universe

is used throughout. The universe in which we dwell is one that needs to satisfy the
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notion of participator alterations.

For simplification purposes, a special set-theoretic definition was previously em-

ployed, which is interpreted as a specific member of the language L or, in this case, L.

In what follows, this simplification is not employed. In the set-theory employed, an or-

dered pair (a, b) is the set {{a}, {a, b}}. Thus, a binary logic-system is such a collection.

For the participator model and m > 1 finitely many participators, let partial sequence

g0(0) = i(∧), and none of the Section 3 ultrawords Wp contains the coding i(∧). There

is a member of ∗L of the form W1 ◦ [g0] ◦ · · · ◦ [g0] ◦ Wm = W ′. Logic-systems are

generally defined and as such are not dependent upon the language employed. Thus,

one can define a logic-system relative to such members of ∗L. In this case, this is a

metamathematical definition.

Let Σ = {(x, y) | (x = W ′) ∧ (y = Wp) ∧ (1 ≤ p ≤ m)}. This is a binary relation

logic-system definition. Let A(q,r) denote the logic-system operator defined by the in-

formal logic-system rule. Thus A(q,r) is applied to Σ and the hypothesis W ′ and then

each of the Wp is “deduced.” When, at least, portions of this hypothesis are viewed in-

formally, then corresponding informal language defined relations are acceptable within

Mathematical Logic. For example, “Thus, we have in U one place relations Qv(x) ‘x

is an L-variable’, Qc(x) ‘x is an L-connective’, Qf (x) ‘x is an L-wff’, Qs(x) ‘x is an

L-sentence’, etc.” (Robinson, (1963, p. 90)). From this view point, since L ⊂ ∗L and

each member of L can be decoded and is a member of a general informal language,

then, for the GID-model, a modified informal-styled but strict interpretation has con-

tinually been applied to ∗L. Thus, the hyper-linguistic expression W ′ is an ultraword.

The logic-system corresponds to a hyper-propositional tautology and the logic-system

algorithm is equivalent to a hyper-form of modus ponens deduction.

The entity W ′ is an hyperfinite member of ∗L. As now known, the cardinality of

each hyperfinite entity is greater than the cardinality of the standard superstructure

itself. Thus, for the GID-interpretation such “deduction” is a higher-intelligence deduc-

tion. Although apparently unnecessary for our present universe, these results can be

extended to a denumerable set of participators, in which case Σ and A(q,r) are external

entities.

5. A Theological Interpretation.

In Hebrews 3:15-16 (NIV), we find “. . . through whom he made the universe.

The Son is the radiance of God’s glory and the exact representation of his being,

sustaining all things by his powerful word.” The Greek used here is not the term “logos”

but rather the term “rhema” that has numerous textual meanings. As analyzed in

Herrmann (1984), it a “supernatural” linguistic entity, an utterance, that is “spoken,”

at least, from a mental viewpoint. The above ultrawords, as interpreted as a string

of linguistic entities that convey “information,” are not physical entities and, hence,

satisfy this Biblical concept. Such rationally defined ultrawords model Hebrews 1:3,
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where an appropriate universe is produced from an ultraword in that the collection of

acceptable altered universes is produced via hyper-deduction. Then each developing

universe is sustained by application of higher-intelligence deduction to an ultraword

and the changing of “thoughts” into physical reality. The method that chooses a

specific development can be produced as described in Herrmann (1978-93), where the

appropriate instruction-entity is chosen, or through a special intervention.
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