
An Efficient Hardware design and Implementation of Advanced Encryption Standard (AES) Algorithm

__

__

Special Issue on International Journal of Recent Advances in Engineering & Technology (IJRAET) V-4 I-2

For National Conference on Recent Innovations in Science, Technology & Management (NCRISTM)

ISSN (Online): 2347-2812, Gurgaon Institute of Technology and Management, Gurgaon 26
th

 to 27
th

 February 2016

5

An Efficient Hardware design and Implementation of Advanced

Encryption Standard (AES) Algorithm

1
Kirat Pal Singh,

2
Shiwani Dod

1
Senior Project Fellow, Optical Devices and Systems, CSIR-Central Scientific Instruments Organisation, Chandigarh, India

2
M.Tech Scholar, Electronics and Communication Engineering, Rayat Bahra University, Kharar, Punjab, India

Email :
1
kirat_addiwal@yahoo.com,

2
shiwithakur@gmail.com

Abstract - We propose an efficient hardware architecture

design & implementation of Advanced Encryption

Standard (AES). The AES algorithm defined by the

National Institute of Standard and Technology (NIST) of

United States has been widely accepted. The cryptographic

algorithms can be implemented with software or built with

pure hardware. However Field Programmable Gate

Arrays (FPGA) implementation offers quicker solution and

can be easily upgraded to incorporate any protocol

changes. This contribution investigates the AES encryption

cryptosystem with regard to FPGA and Very High Speed

Integrated Circuit Hardware Description language

(VHDL). Optimized and Synthesizable VHDL code is

developed for the implementation of 128- bit data

encryption process. AES encryption is designed and

implemented in FPGA, which is shown to be more efficient

than published approaches. Xilinx ISE 12.3i software is

used for simulation. Each program is tested with some of

the sample vectors provided by NIST and output results

are perfect with minimal delay. The throughput reaches

the value of 1609Mbit/sec for encryption process with

Device XC6vlx240t of Xilinx Virtex Family.

Keywords- Advanced Encryption Standard (AES),

Rinjdael, Cryptography, FPGA, Throughput.

I. INTRODUCTION

To protect the data transmission over insecure channels

two types of cryptographic systems are used: Symmetric

and Asymmetric cryptosystems. Symmetric

cryptosystems such as Data Encryption Standard (DES)

[1], 3 DES, and Advanced Encryption Standard (AES)

[4], uses an identical key for the sender and receiver;

both to encrypt the message text and decrypt the cipher

text. Asymmetric cryptosystems such as Rivest-Shamir-

Adleman (RSA) & Elliptic Curve Cryptosystem (ECC)

uses different keys for encryption. Symmetric

cryptosystem is more suitable to encrypt large amount of

data with high speed. To replace the old Data Encryption

Standard, in Sept 12 of 19997, the National Institute of

Standard Technology (NIST) required proposals to what

was called Advanced Encryption Standard (AES). Many

algorithms were presented originally with researches

from 12 different nations. Fifteen algorithms were

selected to the Round one. Next five were chosen to the

Round two. Five algorithms finalized by NIST are

MARS, RC6, RIJNDAEL [2], SERPENT and

TWOFISH [3]. On October 2nd 2000, NIST [4] has

announced the Rijndael algorithm is the best in security,

performance, efficiency, implement ability, & flexibility.

The Rijndael algorithm was developed by Joan Daemen

of Proton World International and Vincent Rijmen of

Katholieke University at Leuven. AES encryption is an

efficient scheme for both hardware and software

implementation. As compare to software implementation,

hardware implementation provides greater physical

security and higher speed. Hardware implementation is

useful in wireless security like military communication

and mobile telephony where there is a greater emphasis

on the speed of communication. Most of the work has

been presented on hardware implementation of AES

using FPGA [5-9]. This paper presents efficient hardware

architecture design & implementation of AES using

FPGA and describes performance testing of Rijndael

algorithm.

II. PREVIOUS DESIGN

An encryption algorithm converts a plain text message

into cipher text message which can be recovered only by

authorized receiver using a decryption technique. The

AES-Rijndael algorithm [4] is an iterative private key

symmetric block cipher. The input and output for the

AES algorithm each consist of sequences of 128 bits

(block length). Hence Nb = Block length/32 = 4.The

Cipher Key for the AES algorithm is a sequence of 128,

192 or 256 bits (Key length). In this implementation we

set the key length to 128. Hence Nk = Key length/32 = 4.

Fig. 1 AES Encryption process

mailto:kirat_addiwal@yahoo.com
mailto:shiwithakur@gmail.com

An Efficient Hardware design and Implementation of Advanced Encryption Standard (AES) Algorithm

__

__

Special Issue on International Journal of Recent Advances in Engineering & Technology (IJRAET) V-4 I-2

For National Conference on Recent Innovations in Science, Technology & Management (NCRISTM)

ISSN (Online): 2347-2812, Gurgaon Institute of Technology and Management, Gurgaon 26
th

 to 27
th

 February 2016

6

A. Encryption Process:

The Encryption process consists of a number of different

transformations applied consecutively over the data block

bits, in a fixed number of iterations, called rounds. The

number of rounds depends on the length of the key used

for the encryption process. For key length of 128 bits, the

number of iteration required are10. (Nr = 10). As shown

in Fig. 1, each of the first Nr-1 rounds consists of 4

transformations: SubBytes(), ShiftRows(),

MixColumns() & AddRoundKey(). The four different

transformations are described in detail below.

Sub Bytes Transformation: It is a non-linear substitution

of bytes that operates independently on each byte of the

State using a substitution table (S box). This S-box which

is invertible is constructed by first taking the

multiplicative inverse in the finite field GF (28) with

irreducible polynomial m(x) = x8 + x4+ x3 + x + 1. The

element {00} is mapped to itself. Then affine

transformation is applied (over GF (2)).

Fig. 2 Look up table for S-box

Shift Rows Transformation: Cyclically shifts the rows of

the State over different offsets. The operation is almost

the same in the decryption process except for the fact that

the shifting offsets have different values.

Mix Columns Transformation: This transformation

operates on the State column-by-column, treating each

column as a four-term polynomial. The columns are

considered as polynomials over GF (28) and multiplied

by modulo x4 + 1 with a fixed polynomial a(x) = {03}

x3+ {01} x2+ {02} x.

The function xtime is used to reprsent the multiplication

with „02‟, modulo the irreducible polynomial m(x) =

x8+x4+x3+x+1. Fig.3 illustrates the implementation of

function B=xtime(A), in which output bits 0,2,5,6,7 just

correspond to input bits shifted and only 3 bits are

midified by the XOR operation. Applying this concept,

we can easily realize the 4-byte output of Mixcolumn as

shown in Fig.4. This direct implementation takes 2 xtime

and 4 additions in calculating each byte output using the

module Byte_MixC whose operation is 2a 3b c

d. In our design, we express the operation of Byte_MixC

as 2(a b) b (c d). So, an efficient design of

MixColumn transformation is shown in Fig. 5. The new

architecture needs only 1 xtime and 4 additions

operations for each Byte_MixC module.

Fig. 3 Function xtime

Fig. 4 Original 4-Byte MixColumn

Fig. 5 Proposed 4-Byte Mixcolumn

AddRoundKey transformation: This transformation is

simply performed by XOR the state with the round key.

In [2], the Key Expansion (KE) is realized as Fig. 6,

where Ki+1,2 must wait until the result of Ki+1,3 is

calculated and it needs 4 calculated steps to obtain the

complete outputs of KE. Such design directly follows

from

 Ki+1,0 =Ki,0 F(Ki,3)

K i+1,1 =Ki+1,1 Ki,1

K i+1,2 =Ki+1,2 Ki,2

K i+1,3 =Ki+1,3 Ki,3

and we can reexpress above equation as

Ki+1,1=(Ki,0 Ki,1) F(Ki,3)

Ki+1,2 =((Ki,0 Ki,1) Ki,2) F(Ki,3)

Ki+1,3 =((Ki,0 Ki,1) (Ki,2 Ki,3)) F(Ki,3)

Based on this expression, we can develop a new key

expansion module in which the output byte don‟t need to

An Efficient Hardware design and Implementation of Advanced Encryption Standard (AES) Algorithm

__

__

Special Issue on International Journal of Recent Advances in Engineering & Technology (IJRAET) V-4 I-2

For National Conference on Recent Innovations in Science, Technology & Management (NCRISTM)

ISSN (Online): 2347-2812, Gurgaon Institute of Technology and Management, Gurgaon 26
th

 to 27
th

 February 2016

7

wait the other output bytes. The proposed key expansion

module is constructed and shown in Fig. 7.

Fig. 6 KE module in [2]

Fig. 7 Proposed KE module

It is known that the normal round includes the operations

of SubByte, ShiftRow, Mixcolumn and AddRoundKey,

and the final round is equal to the normal round without

the MixColumn. Our architecture of AES encryptor is

shown in Fig. 8. The final round in our design is just a

operation of XOR with round key because SubByte and

ShiftRow are the same as the normal round. Fig 9 shows

the detailed design of AES encryptor where the control

signals are described in Table 1 and Fig 10 depicts its

entity diagram. It needs 10 cycles to finish AES

encryption. Based on the same methodology of AES

encryptor, an AES decryptor is also designed and

integrated with the AES encryptor to yield a full

functional AES en/decryptor.

Fig. 8 Architecture of AES Encryptor

Fig. 9 Proposed AES Encryptor design

1. EXPERIMENTAL RESULTS:

All the results are based on simulations from the Xilinx

ISE tools, using Test Bench Waveform Generator. All

the individual transformation of encryption are simulated

and synthesized using FPGA Vertex family and

XC6vlx240t device. Pin configurations of AES Entity are

shown in Table 2. Each program is tested with some of

the sample vectors provided by NIST [4].

Fig. 10 Entity diagram of AES

TABLE 1 INPUT AND OUTPUT CONTROL SIGNALS

Pin

Name

I/O

Port

Pin

Number

(bit)

Pin Description

Clock I 1 Chip clock

Reset I 1 Clear all signal

and data

Load I 1 Load key and plaintext

Start I 1 Start encryption

process

Key_in I 128 Key data bus

Data_in I 128 Plaintext data

Kstat O 1 Kstat becomes high

before output comes

Qstrb O 1 encryption is

completed

Dstat O 1 Dstat becomes high

when plaintext is

loaded, and low when

Qstrb is high

Data_out O 128 Cipher data bus

An Efficient Hardware design and Implementation of Advanced Encryption Standard (AES) Algorithm

__

__

Special Issue on International Journal of Recent Advances in Engineering & Technology (IJRAET) V-4 I-2

For National Conference on Recent Innovations in Science, Technology & Management (NCRISTM)

ISSN (Online): 2347-2812, Gurgaon Institute of Technology and Management, Gurgaon 26
th

 to 27
th

 February 2016

8

Fig. 11 waveform Result of AES algorithm

AES block length/Plane Text = 128bits (Nb=4)

Key length = 128 bits (Nk =4)

No. of Rounds = 10(Nr =10)

Input/plain text – 0x000000000000000000000038

Key– 0x00000000000000004b4952415450414c

Output/Cipher – ef3577ad6e455fcdad863df695572ed0

Fig. 11 represents the waveforms generated by the 128-bit

complete encryption Process. The inputs are clock1 &

clock2, Active High reset, 4-bit round, and 128-bit state &

key as a standard logic vectors, whose output is the 128-

bit cipher (encrypted) data.

TABLE 2 SYNTHESIS RESULT OF AES

Device Parameter Synthesis Result

Target FPGA Device Virtex6-

XV6vlx240tff1156-3

Optimization Goal Speed

Maximum Operating

Frequency

515.38MHz

Number of Slices Registers 954 out of 301440(0%)

Number of Slice LUTs 632 out of 150720(0%)

Number of fully used LUT-

FF pairs

447 out of 1139(39%)

Number of bonded IOBs 391 out of 600(65%)

Number of

BUFG/BUFGCTRLs

1out of 32(3%)

Number of BRAM/FIFO 5out of 416(1%)

Throughput 1609MHz

The parameter that compares AES candidates from the

point of view of their hardware efficiency is Throughput

[12].

Encryption Throughput = block size frequency/total clock

cycles. Thus, Throughput = 128 x 515.38MHz/41 =

1609Mbits/sec.

CONCLUSION

The Advanced Encryption Standard-Rijndael algorithm is

an iterative private key symmetric block cipher that can

process data blocks of 128 bits through the use of cipher

keys with lengths of 128, 192, and 256 bits. An efficient

FPGA implementation of 128 bit block and 128 bit key

AES-Rinjdael cryptosystem has been presented in this

paper. Optimized and Synthesizable VHDL code is

developed for the implementation of 128 bit data

encryption process & description is verified using ISE

12.3i functional simulator from Xilinx. All the

transformations of algorithm are simulated using an

iterative design approach in order to minimize the

hardware consumption. Each program is tested with some

of the sample vectors provided by NIST. The proposed

implementation is efficient and suitable for hardware-

critical applications.

REFERENCES

[1] Nation Institute of Standards and Technology

(NIST), Data Encryption Standard (DES),

National Technical Information Service,

Sprinfgield, VA 22161, Oct. 1999.

[2] J. Daemen and V. Rijmen, “AES Proposal:

Rijndael”, AES Algorithm Submission, September

3, 1999

[3] J. Nechvatal et. al., Report on the development of

Advanced Encryption Standard, NIST

publication, Oct 2, 2000.

[4] FIPS 197, “Advanced Encryption Standard (AES)”,

November 26, 2001

[5] K. Gaj and P. Chodowiec, Comparison of the

hardware performance of the AES candidates

using reconfigurable hardware, in The Third AES

Candidates Conference, printed by the National

Institute of Standards and Technology.

[6] H. Kuo and I. Verbauwhede, “Architectural

Optimization for a 1.82 Gbits/ sec VLSI

Implementation of the AES Rijndael Algorithm,”

Proc. CHESS 2001.

[7] K. Gaj and P. Chodowiec, “Fast Implementation

and Fair Comparison of the Final Candidates for

Advanced Encryption Standard Using Field

Programmable Gate Arrays,” Proc. RSA Security

Conf., Apr. 2001.

[8] A. Dandalis, V.K. Prasanna, and J.D.P. Rolim, “A

Comparative Study of Performance of AES Final

Candidates Using FPGAs,” Proc. Third Advanced

Encryption Standard (AES) Candidate Conf., Apr.

2000.

An Efficient Hardware design and Implementation of Advanced Encryption Standard (AES) Algorithm

__

__

Special Issue on International Journal of Recent Advances in Engineering & Technology (IJRAET) V-4 I-2

For National Conference on Recent Innovations in Science, Technology & Management (NCRISTM)

ISSN (Online): 2347-2812, Gurgaon Institute of Technology and Management, Gurgaon 26
th

 to 27
th

 February 2016

9

[9] Piotr Mroczkowski, Military University of

Technology, Poland,“Implementation of the block

cipher Rijndael using Altera FPGA.”

[10] I. M. Verbauwhede, P.R. Schaumont, and, H.

Kuo, "Deign and Performance Testing of a 2.29

Gb/s Rijndael Processor," IEEE J. of Solid State-

Circuit, Vol.38, No. 3, March 2003, pp. 569 – 572.

[11] Xilinx, Inc.,"Virtex 2.5 V Field Programmable

Gate Arrays," http://www. xilinx.com.

[12] A. J. Elbirt, W. Yip, B. Chetwynd, C. Paar, "An

FPGA implementation and performance

evaluation of the AES block cipher candidate

algorithm finalists," Proc. 3rd Advanced

Encryption Standard (AES) Candidate

Conference.

