THE MISTAKES BY CAUCHY

WU SHENG-PING

For the zeta function [1] we have

$$A := \int_C \frac{dx}{x^{s-1}}$$

analytic in the whole complex plain, but for $s > 1$

$$A = \int_0^\infty \frac{dx}{x^{s-1} - (e^{2\pi i}x)^{s-1}}$$

for great n

$$|A^{(n)}(s)| > |C'| \int_0^1 dx \ln^n x(x^{s-1} - (e^{2\pi i}x)^{s-1})/x > C|1 - e^{2(s-1)\pi i}/(s-1)|, C > 0.1$$

This means its convergent radium is less than $|s - 1|$. Use this function we can
easily to deny the Cauchy’s theorem. The proof mistakes in that: we should make
double limit of partitions P_i and integral circles C_i,

$$\lim_{C_i} \lim_{P_i} A_{ij}, \lim_{P_j} \lim_{C_i} A_{ij}$$

to ensure the sum of the integration and its errors of area between successive circles
of the series, which means the limit is

$$\lim_{P_{j(k,i)}} \lim_{C_i} A_{ij}$$

j is function of k, i. So that it’s conformal double limit.

General quantifier and Universal quantifier, these two words seem the same, but
this example

$$\lim_{i \to \infty} \lim_{n \to \infty} a_{i,n} = C$$

and the following is valid

$$\forall i \left(\lim_{n(i,k),k \to \infty} a_{i,n} \right)$$

Universal quantifier means conformal limit:

$$\lim_{k \to \infty} (a_{1,n(1,k)}, a_{2,n(2,k)}, \ldots)$$

Proof. This condition means $|a_{i,n}| < C'$. Choose $n(k, i)$ to set

$$\lim_{i \to \infty} a_{i,n(i,k)} = C_k$$

We can easily find

$$\lim_{k \to \infty} C_k = C$$

Date: Apr 27, 2014.

2010 Mathematics Subject Classification. 30B10.
So that, define General Quantifier: any, is denoted by

\(\forall i \)

Universal Quantifier: for all, can be denoted by

\(\exists i \)

The reason of this situation is that inductive or one-after-one proof can't empty the set of natural number.

References