THE MISTAKES BY CAUCHY

WU SHENG-PING

ABSTRACT. I find the mistake in Cauchy’s theorem of Complex variables.

For the zeta function [1] we have

\[A := \int_C \frac{dx}{x^{s-1}} \]

analytic in the whole complex plain, but for \(s > 1 \)

\[A = \int_0^\infty \frac{dx}{x^{s-1}} - \left(e^{2\pi i} x \right)^{s-1} \]

for great \(n \)

\[|A^{(n)}(s)| > |C' \int_0^1 dx \ln^n x (x^{s-1} - (e^{2\pi i} x)^{s-1}) / x| > C|1 - e^{(s-1)\pi i} n! | (s-1)^n|, C > 0.1 \]

This means it has convergent radium \(|s - 1| \). Use this function we can easy to deny the Cauchy’s theorem, which’s proof by Cauchy mistake in the the series of a line that approaches to a point, which’s integration can’t be defined sanely. Calculation evince that the error of the integration in the limit doesn’t converge to zero.

REFERENCES

Wuhan university, Wuhan, China.
E-mail address: hiyaho@126.com

Date: Apr 27, 2014.
2010 Mathematics Subject Classification. 30B10.