Two conjectures on Super-Poulet numbers with two respectively three prime factors

Marius Coman email: mariuscoman13@gmail.com

Abstract. In this paper I make two conjectures on Super-Poulet numbers with two, respectively three prime factors.

Definition:

Super-Poulet numbers are the Poulet numbers whose divisors d all satisfy the relation d divides $2^d - 2$ (see the sequence A050217 in OEIS for the list of Super-Poulet numbers).

Note:

Every 2-Poulet number (Poulet number with only two prime factors) is also a Super-Poulet number (see the sequence A214305 for the list of 2-Poulet numbers).

Conjecture 1:

For any 2-Poulet number q^*r (obviously q and r primes, distinct (q < r) beside the case of the two 2-Poulet numbers which are the squares of the two known Wieferich primes) is true one of the following two statements:

- i) there exist n positive integer such that $r = n^{+}q n + 1$;
- ii) there exist p prime, p greater than 7, also n and m positive integers, such that q = n*p - n + 1 and r = m*p - m + 1.

Verifying the conjecture:

(For the first twenty-two 2-Poulet numbers)

:	341 =	= 1	.1*31 a	ind 3	1 = 1	L1*	<u> </u>	2;	
:	1387	=	19*73	and	73 =	19)*4 -	3;	;
:	2047	=	23*89	and	89 =	23	3*4 -	3;	;
:	2701	=	37*73	and	73 =	37	1*2 -	1;	;
:	3277	=	29*113	3 and	113	=	29*4	-	3;
:	4033	=	37*109) and	109	=	37*3	-	2;
:	4369	=	17*257	' and	257	=	17*6	_	5;
:	4681	=	31*151	. and	151	=	31*5	_	4;
:	5461	=	43*127	' and	127	=	43*3	_	2;

7957 = 73*109 and 73 = 6*13 - 5 while 109 = 9*13 - 5: 8; 8321 = 53*157 and 157 = 53*3 - 2;: 10261 = 31*331 and 331 = 31*11 - 10;: $13747 = 59 \times 233$ and $233 = 59 \times 4 - 3;$: 14491 = 43*337 and 337 = 43*8 - 7;: 15709 = 23*683 and 683 = 23*31 - 30;: 18721 = 97*193 and 193 = 97*2 - 1;: $19951 = 71 \times 281$ and $281 = 71 \times 4 - 3$; : 23377 = 97*241 and 97 = 6*17 - 5 while 241 = 15*17 - 5: 14; 31417 = 89*353 and 353 = 89*4 - 3;: 31609 = 73*433 and 433 = 73*6 - 5;: $31621 = 103 \times 307$ and $307 = 103 \times 3 - 2;$: 35333 = 89*397 and 89 = 4*23 - 3 while 397 = 18*23 - 3: 17.

Note that the conjecture is obviously true for the case of the two 2-Poulet numbers which are the squares of the two known Wieferich primes, i.e. 1194649 = 1093^2 and 12327121 = 3511^2. For instance, the prime 1093 can be written in seven distinct ways like n*p - p + 1, where p prime: 1093 = 2*547 - 1 = 7*157 - 6 = 14*79 - 13 = 21*53 - 20 = 26*43 - 25 = 39*29 - 38 = 197*7 - 6 (and, of course, 1093 = 1093*1 - 0).

Conjecture 2:

For any Super-Poulet number with three prime factors $p^{q}r$ (obviously p, q and r primes, p < q < r) is true one of the following two statements:

- iii) there exist n and m positive integers such that q = n*p n + 1 and r = m*p m + 1;
- iv) there exist s prime, s greater than 7, also a, b and c positive integers, such that p = a*s - a + 1, q = b*s - b + 1 and r = c*s - c + 1.

Verifying the conjecture:

(For the first 18 such Super-Poulet numbers)

:	294409 = 37*73*109 and $73 = 37*2 - 1$ while 109) =
	37*3 - 2;	
:	1398101 = 23*89*683 and $89 = 23*4 - 3$ while 683	3 =
	23*31 - 30;	
:	1549411 = 31*151*331 and $151 = 31*5 - 4$ while 333	1 =
	31*11 - 10;	
:	1840357 = 43*127*337 and $127 = 43*3 - 2$ while 33	7 =
	43*8 - 7;	
:	12599233 = 97*193*673 and $193 = 97*2 - 1$ while 67.	3 =
	97*7 – 6 ;	

:	13421773 = 53*157*1613 and $157 = 53*3 - 2$ while 1613
	= 53*31 - 30;
:	$15162941 = 59 \times 233 \times 1103$ and $233 = 59 \times 4 - 3$ while 1103
	= 59*19 - 18;
:	15732721 = 97*241*673 and $97 = 17*6 - 5$ while $241 =$
	17*15 - 14 also 673 = 17*42 - 41;
:	28717483 = 59*233*2089 and $233 = 59*4 - 3$ while 2089
	= 59*36 - 35;
:	29593159 = 43*127*5419 and $127 = 43*3 - 2$ while 5419
	= 43*129 - 128;
:	61377109 = 157*313*1249 and $313 = 157*2 - 1$ while
	$1249 = 157 \times 8 - 7;$
:	66384121 = 89*353*2113 and 353 = 89*4 - 3 while 2113
	= 89*24 - 23;
:	67763803 = 103*307*2143 and $307 = 103*3 - 2$ while
	$2143 = 103 \times 21 - 20;$
:	74658629 = 89*397*2113 and 89 = 23*4 - 3 while 397 =
	23*18 - 17 while 2113 = 23*96 - 95;
:	78526729 = 43*337*5419 and $337 = 43*8 - 7$ while 5419
	= 43*129 - 128;
:	90341197 = 103*307*2857 and $307 = 103*3 - 2$ while
	$2857 = 103 \times 28 - 27;$
:	96916279 = 167*499*1163 and $499 = 499*3 - 2$ while
	1163 = 167*7 - 6;
:	109322501 = 101*601*1801 and $601 = 101*6 - 5$ while
	$1801 = 101 \times 18 - 17.$