Two conjectures on SuperPoulet numbers with two respectively three prime factors

Marius Coman
email: mariuscoman13@gmail.com

Abstract. In this paper I make two conjectures on SuperPoulet numbers with two, respectively three prime factors.

Definition:

Super-Poulet numbers are the Poulet numbers whose divisors d all satisfy the relation d divides 2^{\wedge} d - 2 (see the sequence A050217 in OEIS for the list of SuperPoulet numbers).

Note:

Every 2-Poulet number (Poulet number with only two prime factors) is also a Super-Poulet number (see the sequence A214305 for the list of 2-Poulet numbers).

Conjecture 1:

For any 2-Poulet number q^{*} r (obviously q and r primes, distinct (q < r) beside the case of the two 2-Poulet numbers which are the squares of the two known Wieferich primes) is true one of the following two statements:
i) there exist n positive integer such that $r=n * q-n$ +1 ;
ii) there exist p prime, p greater than 7, also n and m positive integers, such that $q=n * p-n+1$ and $r=$ m*p - m + 1 .

Verifying the conjecture:

(For the first twenty-two 2-Poulet numbers)

```
: 341 = 11*31 and 31 = 11*3 - 2;
: 1387 = 19*73 and 73 = 19*4 - 3;
: 2047 = 23*89 and 89 = 23*4 - 3;
: 2701 = 37*73 and 73 = 37*2 - 1;
: 3277 = 29*113 and 113 = 29*4 - 3;
: 4033 = 37*109 and 109 = 37*3 - 2;
: 4369 = 17*257 and 257 = 17*6 - 5;
: 4681 = 31*151 and 151 = 31*5 - 4;
: 5461 = 43*127 and 127 = 43*3 - 2;
```

```
: 7957 = 73*109 and 73 = 6*13 - 5 while 109 = 9*13 -
    8;
: 8321 = 53*157 and 157 = 53*3 - 2;
: 10261 = 31*331 and 331 = 31*11 - 10;
: 13747 = 59*233 and 233 = 59*4 - 3;
: 14491 = 43*337 and 337 = 43*8 - 7;
: 15709 = 23*683 and 683 = 23*31 - 30;
: 18721 = 97*193 and 193 = 97*2 - 1;
: 19951 = 71*281 and 281 = 71*4 - 3;
: 23377 = 97*241 and 97 = 6*17 - 5 while 241 = 15*17 -
    14;
: 31417 = 89*353 and 353 = 89*4 - 3;
: 31609 = 73*433 and 433 = 73*6 - 5;
: 31621 = 103*307 and 307 = 103*3 - 2;
: 35333=89*397 and 89 = 4*23 - 3 while 397 = 18*23 -
    17.
```

Note that the conjecture is obviously true for the case of the two 2 -Poulet numbers which are the squares of the two known Wieferich primes, i.e. $1194649=$ 1093^2 and $12327121=3511^{\wedge} 2$. For instance, the prime 1093 can be written in seven distinct ways like $n * p-p+1$, where p prime: $1093=2 * 547-1=$ $7 * 157-6=14 * 79-13=21 * 53-20=26 * 43-25=$ $39 * 29-38=197 * 7$ - 6 (and, of course, $1093=$ 1093*1 - 0).

Conjecture 2:

For any Super-Poulet number with three prime factors p*q*r (obviously p, q and r primes, $p<q<r$) is true one of the following two statements:
iii) there exist n and m positive integers such that $q=$ $n * p-n+1$ and $r=m * p-m+1$;
iv) there exist s prime, s greater than $7, a l s o a, b$ and c positive integers, such that $p=a^{*} s-a+1, q=$ $\mathrm{b} * \mathrm{~s}-\mathrm{b}+1$ and $\mathrm{r}=\mathrm{c}^{*} \mathrm{~s}-\mathrm{c}+1$.

Verifying the conjecture:

(For the first 18 such Super-Poulet numbers)

```
: 294409 = 37*73*109 and 73 = 37*2 - 1 while 109 =
    37*3 - 2;
: 1398101 = 23*89*683 and 89 = 23*4 - 3 while 683=
    23*31 - 30;
: 1549411 = 31*151*331 and 151 = 31*5 - 4 while 331=
    31*11 - 10;
: 1840357=43*127*337 and 127=43*3 - 2 while 337=
    43*8 - 7;
: 12599233=97*193*673 and 193 = 97*2 - 1 while 673=
    97*7 - 6;
```

```
: 13421773 = 53*157*1613 and 157 = 53*3 - 2 while 1613
    = 53*31 - 30;
    15162941 = 59*233*1103 and 233 = 59*4 - 3 while 1103
    = 59*19 - 18;
    15732721 = 97*241*673 and 97 = 17*6 - 5 while 241 =
    17*15 - 14 also 673 = 17*42 - 41;
: 28717483 = 59*233*2089 and 233 = 59*4 - 3 while 2089
    = 59*36 - 35;
: 29593159 = 43*127*5419 and 127 = 43*3 - 2 while 5419
    = 43*129 - 128;
: 61377109 = 157*313*1249 and 313 = 157*2 - 1 while
    1249 = 157*8 - 7;
: 66384121 = 89*353*2113 and 353 = 89*4 - 3 while 2113
    = 89*24 - 23;
: 67763803 = 103*307*2143 and 307 = 103*3 - 2 while
    2143 = 103*21 - 20;
: 74658629 = 89*397*2113 and 89 = 23*4 - 3 while 397 =
    23*18 - 17 while 2113 = 23*96 - 95;
    78526729 = 43*337*5419 and 337 = 43*8 - 7 while 5419
    = 43*129 - 128;
: 90341197 = 103*307*2857 and 307 = 103*3 - 2 while
    2857 = 103*28 - 27;
: 96916279 = 167*499*1163 and 499 = 499*3 - 2 while
    1163 = 167*7 - 6;
: 109322501 = 101*601*1801 and 601 = 101*6 - 5 while
    1801 = 101*18 - 17.
```

