Sequence of Poulet numbers obtained by formula mn-n+1 where m of the form $270 k+13$

Abstract

In this paper we conjecture that there exist an infinity of Poulet numbers of the form m*n - n + 1, where m is of the form $270 * k+13$. Incidentally, verifying this conjecture, we found results that encouraged us to issue yet another conjecture, i.e. that there exist an infinity of numbers s of the form $270 * k+13$ which are semiprimes $\mathrm{s}=\mathrm{p}$ *q having the property that $q-p+1$ is prime or power of prime.

Conjecture:

There exist an infinity of Poulet numbers of the form m*n - $\mathrm{n}+1$, where m is of the form $270 * k+13$.

Examples:

```
: for k = 1, m = 283 and the following numbers are
    Poulet numbers:
    : 2821 = 283*10 - 10 + 1 (...)
: for k = 2, m = 553 and the following numbers are
    Poulet numbers:
    : 1105 = 553*2 - 2 + 1 (...)
: for k = 4, m = 1093 and the following numbers are
    Poulet numbers:
    : 3277 = 1093*3 - 3 + 1;
    : 4369 = 1093*4 - 4 + 1;
    : 5461 = 1093*5 - 4 + 1 (...)
```

The sequence of Poulet numbers of the form $m \star n-n+1$, where m is of the form 270*k + 13:
: 1105, 2821, 3277, 4369, 5461 (...)

Conjecture:

There exist an infinity of numbers s of the form $270 * k+$ 13 which are semiprimes $s=p * q$ having the property that q - p + 1 is prime or power of prime.

Examples:

: for $k=2, \mathrm{~s}=553=7 * 79$ and $79-7+1=73$, prime;

```
: for \(k=5, s=1363=29 * 47\) and \(47-29+1=19\),
    prime;
: for \(\mathrm{k}=6, \mathrm{~s}=1633=23 * 71\) and \(71-23+1=49\),
    power of prime (7^2);
: for \(k=7, \mathrm{~s}=1903=11 * 173\) and \(173-11+1=163\),
    prime;
: for \(k=8, \mathrm{~s}=2173=41 * 53\) and \(53-41+1=13\),
    prime;
: for \(k=9, \mathrm{~s}=2443=7 * 349\) and \(349-7+1=343\),
    power of prime (7^3);
: for \(k=11, s=2983=19 * 157\) and \(157-19+1=\)
    139, prime;
: for \(\mathrm{k}=15, \mathrm{~s}=4063=17 * 239\) and \(239-17+1=\)
    223, prime;
: for \(k=16, \mathrm{~s}=4333=7 * 619\) and \(619-7+1=613\),
    prime;
: for \(\mathrm{k}=18, \mathrm{~s}=4873=11 * 443\) and \(443-11+1=\)
    433, prime;
    for \(k=19, s=5143=37 * 139\) and \(139-37+1=\)
    103, prime;
: for \(\mathrm{k}=24, \mathrm{~s}=6493=43 * 151\) and \(151-43+1=\)
    109, prime;
: for \(\mathrm{k}=26, \mathrm{~s}=7033=13 * 541\) and \(541-13+1=\)
    529, power of prime (23^2);
: for \(\mathrm{k}=27, \mathrm{~s}=7303=67 * 109\) and \(109-67+1=43\),
    prime;
: for \(k=33, \mathrm{~s}=8383=83 * 101\) and \(101-83+1=19\),
    prime;
    (...)
: for \(k=20000, s=5400013=1627 * 3319\) and 3319 -
    \(1627+1=1693\), prime;
    (...)
: for \(k=190000, \mathrm{~s}=51300013=1487 * 34499\) and 34499
    - 1487 + 1 = 33013, prime;
```


Note :

Many other numbers s of the form $270 * k+13$ are semiprimes $s=p 1 * q 1$ having the property that $q 1-p 1+1$ is a semiprime p2*q2 having the property that q2 - p2 is prime.

Example:

: for $k=2000000$, $s=540000013=7 * 77142859$ and $77142859-7+1=77142853=41 * 1881533$ and 1881533 - $41+1=1881493$, prime.

