Four conjectures on the numbers of the form $(p+270) *_{n}-n+1$ where p and $p+270$ primes

Abstract

In this paper we conjecture that there exist an infinity of primes, respectively squares of primes, respectively semiprimes with a certain property, respectively Poulet numbers of the form ($\mathrm{p}+270$) *n $-\mathrm{n}+$ 1, for any p prime greater than or equal to 7, if p +270 is also a prime number.

Conjecture 1:

There exist an infinity of primes of the form (p + 270)*n - $n+1$, for any p prime greater than or equal to 7, if p +270 is also a prime number.

Examples:

(for $\mathrm{p}=7,11,13,23,37$ up to $\mathrm{n}=15$)
: for $\mathrm{p}=7,277$ also prime and are obtained, for $\mathrm{n}=$ 3, 5, 6, 7, 11, 12 (...) the primes 829, 1381, 1657, 1933, 3037, 3313 (...)
: for $\mathrm{p}=11,281$ also prime and are obtained, for $\mathrm{n}=$ 9, 10, 12, 15 (...) the primes 2521, 2801, 3361, 4201 (...)
: for $\mathrm{p}=13,283$ also prime and are obtained, for $\mathrm{n}=$ 4, 6, 9, 15 (...) the primes 1129, 1693, 2539, 4231 (...)
: for $\mathrm{p}=23,293$ also prime and are obtained, for $\mathrm{n}=$ 3, 6, 13 (...) the primes 877, 1753, 3797 (...)
: for $\mathrm{p}=37,307$ also prime and are obtained, for $\mathrm{n}=$ 2, 3, 5, 7, 10, 12, 15 (...) the primes 613, 919, 1531, 2143, 3061, 3673, 4591 (...)

Conjecture 2:

There exist an infinity of squares of primes of the form ($p+270$) *n - $n+1$, for any p prime greater than or equal to 7, if $p+270$ is also a prime number.

Examples:

(for $\mathrm{p}=7,11,13,23,37$ up to $\mathrm{n}=15$)
: for $\mathrm{p}=7,277$ also prime and are obtained, for $\mathrm{n}=$ 8 (...) the squares of primes 2209 (= 47^2) (...)
: for $\mathrm{p}=11,281$ also prime and are obtained, for $\mathrm{n}=$ 3, 6 (...) the squares of primes 841 (= 29^2), 1681 (= 41^2) (...)

Conjecture 3:

There exist an infinity of semiprimes q1*q2 of the form $q 1 * q 2=(p+270) * n-n+1$ having the property that q2 q1 +1 is prime, for any p prime greater than or equal to 7, if p +270 is also a prime number.

Examples:

(for $\mathrm{p}=7,11,13,23,37$ up to $\mathrm{n}=15$)
: for $\mathrm{p}=7,277$ also prime and are obtained, for $\mathrm{n}=$ 1, 10, 13, 14, 15 (...) the semiprimes 553 (= 7*79 and $79-7+1=73$, prime), 2761 (= 11*251 and 251 - $11+1=241$, prime), 3589 (= $37 * 97$ and $97-37+$ $1=61$, prime), 3865 ($=5 * 773$ and $773-5+1=769$, prime), 4141 (= 41*101 and $101-41+1=61$, prime (...)
: for $\mathrm{p}=11,281$ also prime and are obtained, for $\mathrm{n}=$ 4, 7 (...) the semiprimes 1121 (= 19*59 and 59 - 19 $+1=41$, prime), 1961 ($=37 * 53$ and $53-37+1=$ 17, prime) (...)
: for $\mathrm{p}=13,283$ also prime and are obtained, for $\mathrm{n}=$ 5, 14 (...) the semiprimes 1411 (= 17*83 and 83 - 17 $+1=67$, prime), 3949 (= $11 * 359$ and 359 - $11+1=$ 349, prime (...)
: for $\mathrm{p}=23,293$ also prime and are obtained, for $\mathrm{n}=$ 9 (...) the semiprimes 2629 (= 11*239 and 239 - 11 + $1=229$, prime) (...)
: for $\mathrm{p}=37,307$ also prime and are obtained, for $\mathrm{n}=$ 6, 13, 14 (...) the semiprimes 1837 (= 11*167 and $167-11+1=157$, prime), 3979 (= 23*173 and 173 $23+1=151$, prime), 4285 (= 5*857 and 857-5 + 1 = 853, prime (...)

Conjecture 4:

There exist an infinity of Poulet numbers of the form (p
 to 7, if $p+270$ is also a prime number.

Examples:

```
(for \(p=7,11,13,23,37\) up to \(n=15\) )
: for \(p=7,277\) also prime and are obtained, for \(n=\)
    4 (...) the Poulet numbers 1105 (...)
: for \(\mathrm{p}=11,281\) also prime and are obtained, for \(\mathrm{n}=\)
    2 (...) the Poulet numbers 561 (...)
: for \(\mathrm{p}=13,283\) also prime and are obtained, for \(\mathrm{n}=\)
    10 (...) the Poulet numbers 2821 (...)
```

