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Abstract 
 

In this paper we study the factorization theorem of circulant determinants. We prove that 
Fermat equation is the subset of circulant determinant and every factor of n  has a Fermat 
equation. On Oct. 25, 1991 without using any number theory we have proved Fermat last theorem 

 
 
We have defined the complex hyperbolic functions of order n  with 1n −  variables, where 

n  is an odd number [1], 
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(1) may be written in the matrix form 
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where ( 1) / 2n −  is an even number. From (4) we obtain its inverse tranformation 
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From (5) we have 
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From (7) we have 
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Let 3n = . From (6) and (8) we have 
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(9) may be written in the form of circulant determinant 
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Let 5n = . From (6) and (8) we have 
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(11) and (12) may be written in the form of circulant determinant 
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In the same way we have 
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Theorem 1. Let 3n p= , where p is an odd prime. (14) can be factorized both circulant 

subdeterminants. 
Proof. First we discuss 15n = . From (14) we have 
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From (6) and (8) we have 
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where 2
5 0 5i iS Sα α⋅ = += Σ . From (2) we have 
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(20), (21), (22) and (23) may be written in the form of circulant determinant 
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(19) and (24) are the circulant subdeterminants of (15). Let 3n p= , where p is an odd prime. 

From (14) we have 
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From (6) and (8) we have 
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(26), (27) and (28) may be written in the form of circulant determinant 
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From (6) and (8) we have 
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(29) and (33) are circulant subdeterminants of (25). 
 

Theorem 2. Every factor of n  has a circulant determinant. 
Theorem 3. Fermat equation is the subset of circulant determinant. 

Proof. Let in (25) 1 0S ≠ , 2 0S ≠ , 0iS = , where 3, 4, ,3i p=  . 0iS =  are 3 2p −  

indeterminate equations with 3 1p −  variables. 3 1 1S S⋅ = , 3 2 2S S⋅ = , 3 3 0S ⋅ = ; 1 1pS S⋅ = , 

2 2pS S⋅ = , 0p iS ⋅ = , where 3, 4, ,i p=  . From (15), (19) and (24) we have Fermat equations 
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3 3
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In (34) Euler proved 15 15
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Therefore 1 2 2[exp( )]p p p
p pS S t t+ = +  has no rational solutions for any prime 3p > . On Oct. 

25, 1991 using this method we have proved the Feirmat last theorem. 
Theorem 4. Every factor of n  has a Fermat equation [2]. 
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Dear Dr. Jiang, Chun-xuan, 
I was happy to receive news from you. You will be pleased to know that I have accepted your 
article for publication in Algebras Grous and Geometries. The sole change has been the removal of 
the last line of the test and of referencs [3.4.5]. This is due to the fact that these references are not 
published and would damage your paper. Instead of this mention in the current paper, I encourage 
you to write a condensed article on Fermat theorem for AGG. 

You may be interested to know that I have invited Prof. Quing-ming Cheng of the Institute of 
Mathematics of Fudan Universit, Shangai, to become an Editor for AGG. 

I am working at Vol. III of Elements of Hadronic Mechanics (see enclosed flier) in which I 
shall review your results published in the Haronic Journal regarding the total number of electrons 
predicted by the number theory in the hadronic structure. I shall send you a complimentary copy 
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of the volume with the review of your work when printed.  
Wishing you the best, I remain 
 
Yours, Truly 
 
Prof. Ruggero Maria Santilli 
Editor in Chief 
Algebras Groups and Geometries 
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Note. We found out a new method for proving Fermat last theorem in 1991. We proved Fermat last 
theorem at one stroke for all prime exponents 3p > . This proof is too simple for one to believe, 
but one can understand it. Let one know the important result, we gave out about 600 preprints in 
1991-1992. There are my preprints in the west universities and journals. It the same time both 
papers were published in Chinese. As yet, no one disprove this proof. Anyone can not deny it. It is 
a simple and marvelous proof. We sent dept of math (Princeton University) a preprint on Jan. 15, 
1992. They surely read it. Andrew, Wiles claims the second proof of FLT after two years. We 
believe that the experts of mathematical history will write the course of the proof of FTI, because 
many mathmaticans in the West read my preprints in 1991-1992. 
 

 
 
 
 
 


