The following short paper was written in 2001 (together with more material), but is never was published.
M. Horn 1

[^0]
Birthday Present for the Chudnovskys

Martin Erik Horn

Abstract

A formula for $\frac{1}{7}!^{42}=\Gamma_{(8 / 7)}$ is given.

I. Introduction

I really don't know much about the Chudnovsky brothers - in fact less more than the astonishing story told in /1/. But they surely have a birthday or maybe even two. So it is time to send them an appropriate present: a formula for pi.

II. Here it is

$$
\begin{align*}
& \pi=\left[\frac{1}{7}!^{42} \cdot \frac{7^{29}}{2^{31}} \cdot \sin ^{2} \frac{2 \pi}{7} \cdot\left(\frac{1}{2}+\frac{1}{8^{2}}+\frac{6^{2}}{8^{2} \cdot 15^{2}}+\frac{6^{2} \cdot 13^{2}}{8^{2} \cdot 15^{2} \cdot 22^{2}}+\frac{6^{2} \cdot 13^{2} \cdot 20^{2}}{8^{2} \cdot 15^{2} \cdot 22^{2} \cdot 29^{2}}+\ldots\right)^{-9}\right. \\
& \cdot\left(\ldots+\frac{4^{2} \cdot 11^{2}}{6^{2} \cdot 13^{2} \cdot 20^{2}}+\frac{4^{2}}{6^{2} \cdot 13^{2}}+\frac{1}{6^{2}}+\frac{1}{3^{2}}+\frac{1}{3^{2} \cdot 10^{2}}+\frac{8^{2}}{3^{2} \cdot 10^{2} \cdot 17^{2}}+\ldots\right)^{3} \tag{1}\\
&\left.\cdot\left(\ldots+\frac{2^{2} \cdot 9^{2}}{4^{2} \cdot 11^{2} \cdot 18^{2}}+\frac{2^{2}}{4^{2} \cdot 11^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{3^{2}}{5^{2} \cdot 12^{2}}+\frac{3^{2} \cdot 10^{2}}{5^{2} \cdot 12^{2} \cdot 19^{2}}+\ldots\right)^{4}\right]^{1 / 20}
\end{align*}
$$

I am sorry for the series expansions. Indeed they don't converge very quickly.

III. The main result

Of course there is a strategy you need to reach this formula. Mainly one should look about series expansions for different values of the gamma function. For example this one:

$$
\begin{equation*}
\frac{1}{7}!^{42}=\frac{2^{31} \cdot \pi^{20}}{7^{29} \cdot \sin ^{2} \frac{2 \pi}{7}} \cdot \frac{\left(\frac{1}{2}+\frac{1}{8^{2}}+\frac{6^{2}}{8^{2} \cdot 15^{2}}+\ldots\right)^{9}}{\left(\ldots+\frac{1}{6^{2}}+\frac{1}{3^{2}}+\frac{1}{3^{2} \cdot 10^{2}}+\ldots\right)^{3} \cdot\left(\ldots+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{3^{2}}{5^{2} \cdot 12^{2}}+\ldots\right)^{4}} \tag{2}
\end{equation*}
$$

Then (1) follows straightforward.

IV. Happy Birthday

Proofing formula (2) right should be shivering easy. And proofing this formula wrong could make you a great mathematician because (2) for sure is correct. Being a physicist giving a crude and somehow strange Herleitung is no problem. But this is another story. It's now up to you, mathematicians of the world, to total up a proof in these stormy times.

Literature

/1/ David Blatner: π - Magie einer Zahl, Rowohlt Verlag, Reinbek bei Hamburg 2000.

[^0]: ${ }^{1}$ www.martinerikhorn.de mail@martinerikhorn.de

