A proof of a well-known representation of Catalan's constant*

Hervé G. (also known as FDP)

December 18, 2015

Abstract

The formula, $G=3 \int_{0}^{1} \arctan \left(\frac{x(1-x)}{2-x}\right) \frac{1}{x} \mathrm{~d} x, G$ being the Catalan's constant, have been popularized by James McLaughlin in September 2007[1]. We present here an elementary proof of it.

1 Introduction

From the following formulae [2],

$$
\begin{aligned}
& G=\quad \frac{3}{2} \int_{2+\sqrt{3}}^{+\infty} \frac{\log x}{1+x^{2}} \mathrm{~d} x \\
& G= \\
& \quad \int_{1}^{+\infty} \frac{\log x}{1+x^{2}} \mathrm{~d} x
\end{aligned}
$$

we deduce:

$$
G=\quad 3 \int_{1}^{2+\sqrt{3}} \frac{\log x}{1+x^{2}} \mathrm{~d} x
$$

In what follows, our aim is to prove:

$$
\begin{equation*}
\int_{0}^{1} \frac{1}{x} \arctan \left(\frac{x(1-x)}{2-x}\right) \cdot \mathrm{d} x=\int_{1}^{2+\sqrt{3}} \frac{\log x}{1+x^{2}} \mathrm{~d} x \tag{1.1}
\end{equation*}
$$

*Thanks go to http://www.les-mathematiques.net for help and inspiration and to the author of Bigints $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ package, Merciadri Luca

2 Preamble: Some results.

The proof relies on the following identity.
Let u, v be two real numbers such that $u<0, v>0$ and $u+v>0$.
Let $w:=\frac{u^{2}+v^{2}}{u+v}$.

$$
\begin{equation*}
\forall x \in[0,1], \arctan \left(\frac{x(1-x)}{\frac{w}{u+v}-x}\right)=\arctan \left(\frac{u x}{w-v x}\right)+\arctan \left(\frac{v x}{w-u x}\right) \tag{2.1}
\end{equation*}
$$

Proof. It's straightforward to prove that $\frac{u v x^{2}}{(w-u x)(w-v x)}$ is well defined and negative when conditions on u, v, x are satisfied.

To prove it's greater than or equal to -1 notice that:
$u v x^{2}+(w-u x)(w-v x)=2 u v x^{2}-\left(u^{2}+v^{2}\right) x+w^{2}$

The use of arctangent addition formula terminates the proof.
Two lemmas are required to achieve the proof.
Lemma 2.1. Let f be a continuous and differentiable function that is defined for all real numbers, and $f(0)=0$. If $d>0$ and, $d>c>0$ or $c<0$ then:

$$
\int_{0}^{1} \frac{1}{x} f\left(\frac{a x}{d-c x}\right) \mathrm{d} x=a \int_{0}^{\frac{a}{d-c}} \frac{f(x)}{x(a+c x)} \mathrm{d} x
$$

Lemma 2.2. Let u, v two real numbers such that $c>0$ and $0 \leq u<\frac{1}{c}$.

$$
\int_{0}^{u} \frac{1}{1+x^{2}} \log \left(\frac{1+\frac{1}{c} x}{1-c x}\right) \mathrm{d} x=-\log c \cdot \arctan u-\int_{\frac{1-c u}{c+u}}^{\frac{1}{c}} \frac{\log x}{1+x^{2}} \mathrm{~d} x
$$

Proof. Use change of variable in the integral in the right-hand side:

$$
y=\frac{1-c x}{c+x}
$$

and recall that:

$$
\arctan u=\int_{0}^{u} \frac{1}{1+x^{2}} \mathrm{~d} x
$$

3 Proof of the main result

Hereafter, N is an integer greater than or equal to 2 .
Assume $u=1-\sqrt{N}, v=1+\sqrt{N}$ therefore, $u<0, v>0, u+v=2>0$
and $w=\frac{u^{2}+v^{2}}{u+v}=1+N$.
For all $x \in[0,1]$, according to 2.1 :
$\arctan \left(\frac{x(1-x)}{\frac{N+1}{2}-x}\right)=\arctan \left(\frac{(1-\sqrt{N}) x}{N+1-(1+\sqrt{N}) x}\right)+\arctan \left(\frac{(1+\sqrt{N}) x}{N+1-(1-\sqrt{N}) x}\right)$

Assume $a=1-\sqrt{N}, c=1+\sqrt{N}, d=N+1$, therefore, $d>c>0$ and $\frac{a}{d-c}=-\frac{1}{\sqrt{N}}$.

Let $\alpha=\frac{\sqrt{N}-1}{\sqrt{N}+1}$.

Using lemma 2.1 and change of variable $y=-x$ one obtains:

$$
\int_{0}^{1} \frac{1}{x} \arctan \left(\frac{(1-\sqrt{N}) x}{N+1-(1+\sqrt{N}) x}\right) \mathrm{d} x=-\int_{0}^{\frac{1}{\sqrt{N}}} \frac{\arctan x}{x\left(1+\frac{1}{\alpha} x\right)} \mathrm{d} x
$$

Assume $a=1+\sqrt{N}, c=1-\sqrt{N}, d=N+1$, therefore, $d>0, c<0$ and $\frac{a}{d-c}=\frac{1}{\sqrt{N}}$.

Using lemma 2.1 :

$$
\int_{0}^{1} \frac{1}{x} \arctan \left(\frac{(1+\sqrt{N}) x}{N+1-(1-\sqrt{N}) x}\right) \mathrm{d} x=\int_{0}^{\frac{1}{\sqrt{N}}} \frac{\arctan x}{x(1-\alpha x)} \mathrm{d} x
$$

Since $\frac{1}{\alpha}>1$, the following identity holds for all real numbers in $\left.] 0,1\right]$:

$$
\frac{1}{x(1-\alpha x)}-\frac{1}{x\left(1+\frac{1}{\alpha} x\right)}=\frac{\alpha}{1-\alpha x}+\frac{\frac{1}{\alpha}}{1+\frac{1}{\alpha} x}
$$

Using integration by parts, one gets:

$$
\begin{aligned}
& \int_{0}^{\frac{1}{\sqrt{N}}} \frac{\alpha \arctan x}{1-\alpha x} \mathrm{~d} x=\quad-\log \left(1-\frac{\alpha}{\sqrt{N}}\right) \arctan \left(\frac{1}{\sqrt{N}}\right)+\int_{0}^{\frac{1}{\sqrt{N}}} \frac{\log (1-\alpha x)}{1+x^{2}} \mathrm{~d} x \\
& \int_{0}^{\frac{1}{\sqrt{N}}} \frac{\frac{1}{\alpha} \arctan x}{1+\frac{1}{\alpha} x} \mathrm{~d} x=\log \left(1+\frac{1}{\alpha \sqrt{N}}\right) \arctan \left(\frac{1}{\sqrt{N}}\right)-\int_{0}^{\frac{1}{\sqrt{N}}} \frac{1}{1+x^{2}} \log \left(1+\frac{1}{\alpha} x\right) \mathrm{d} x
\end{aligned}
$$

The following equality holds:

$$
\frac{1+\frac{1}{\alpha \sqrt{N}}}{1-\frac{1}{\sqrt{N}} \alpha}=\frac{1}{\alpha}
$$

thus, one obtains:

$$
\int_{0}^{1} \frac{1}{x} \arctan \left(\frac{x(1-x)}{\frac{N+1}{2}-x}\right) \mathrm{d} x=-\arctan \left(\frac{1}{\sqrt{N}}\right) \log \alpha-\int_{0}^{\frac{1}{\sqrt{N}}} \frac{1}{1+x^{2}} \log \left(\frac{1+\frac{1}{\alpha} x}{1-\alpha x}\right) \mathrm{d} x
$$

The following equality holds:

$$
\frac{1-\frac{\alpha}{\sqrt{N}}}{\alpha+\frac{1}{\sqrt{N}}}=1
$$

thus, applying lemma 2.2 to the integral in the right-hand side one obtains:

$$
\begin{equation*}
\int_{0}^{1} \frac{1}{x} \arctan \left(\frac{x(1-x)}{\frac{N+1}{2}-x}\right) d x=\int_{1}^{\frac{\sqrt{N}+1}{\sqrt{N}-1}} \frac{\log x}{1+x^{2}} d x \tag{3.1}
\end{equation*}
$$

The formula 1.1 follows by taking $N=3$.
Remark. An alternative way to prove 3.1 is to consider N as a real number parameter strictly greater than 1 .

4 References

References

[1] https://listserv.nodak.edu/cgi-bin/wa.exe?A0=NMBRTHRY
[2] David M. Bradley, Representations of Catalan's constant (2001), formulae (32) and (17).

