Notable observation on a property of Carmichael numbers

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I conjecture that for any Carmichael number C is true one of the following two statements: (i) there exist at least one prime q, q lesser than $\operatorname{sqr}(C)$, such that $p=(C-q) /(q-1)$ is prime, power of prime or semiprime $m * n, n>m$, with the property that $n-m+1$ is prime or power of prime or $n+$ m - 1 is prime or power of prime; (ii) there exist at least one prime q, q lesser than $S q r(C)$, such that $p=$ $(C-q) /\left((q-1) * 2^{\wedge} n\right)$ is prime or power of prime. In two previous papers I made similar assumptions on the squares of primes of the form $10 k+1$ respectively $10 k+9$ and I always believed that Fermat pseudoprimes behave in several times like squares of primes.

Conjecture:

For any Carmichael number C is true one of the following two statements:
(i) there exist at least one prime q, q lesser than Sqr (C), such that $p=(C-q) /(q-1)$ is prime, power of prime or semiprime $m * n$, $n>m$, with the property that $n-m+1$ is prime or power of prime or $n+m-$ 1 is prime or power of prime;
(ii) there exist at least one prime q, q lesser than Sqr (C), such that $p=(C-q) /\left((q-1) * 2^{\wedge} n\right)$ is prime or power of prime.

Verifying the conjecture:

(for the first ten Carmichael numbers)
: $\quad C=561$ and $(C-5) / 4=139$, prime; also $(C-11) / 10=$ 5*11, semiprime such that $11-5+1=7$, prime; also (C - 17)/(16*2) = 17, prime;
: $\quad C=1105$ and $(C-7) / 6=3 * 61$, semiprime such that $61-3$ $+1=59$, prime; also (C -13$) / 12=7 * 13$, semiprime such that $13-7+1=7$, prime and $13+7-1=19$, prime; also (C - 17)/(16*2^2) = 17, prime;
: $\quad C=1729$ and $(C-5) / 4=431$, prime; also (C - 17)/16 = 107, prime; also (C -37)/36 = 47, prime;
: $\quad C=2465$ and $(C-29) / 28=3 * 29$, semiprime such that $29-$ $3+1=27=3 \wedge 3$, power of prime and $29+3-1=31$, prime;
: $\quad C=2821$ and $(C-7) / 6=7 * 67$, semiprime such that $67-7$ $+1=61$, prime and $67+7-1=73$, prime; also (C 11)/10 = 281, prime; also (C - 31)/30 = 3*31, semiprime such that $31-3+1=29$, prime;
: $\quad C=6601$ and $(C-5) / 4=17 * 97$, semiprime such that $97-$ $17+1=81=3 \wedge 4$, power of prime and $97+17-1=113$, prime; also (C - 7)/6 = 7*157, semiprime such that 157 $7+1=151$, prime and $157+7-1=163$, prime; also (C - 11)/10 = 659, prime; also (C - 23)/22 = 13*23, semiprime such that $23-13+1=11$, prime; also (C 31)/30 = 3*73, semiprime such that $73-3+1=71$, prime; also (C -61)/60 = 109, prime;
: $\quad C=8911$ and $(C-23) /(22 * 2 \wedge 2)=101$, prime; also (C 31)/(30*2^3) = 37, prime; also (C - 67)/(66*2) = 67, prime;
: $\quad C=10585$ and $(C-7) / 6=41 * 43$, semiprime such that 43 $41+1=3$, prime and $43+41-1=83$, prime; also (C 13)/12 = 881, prime; also (C - 19)/18 = 587, prime; also (C - 29)/28 = 13*29, semiprime such that $29-13+1=$ 17, prime and $13+29-1=41$, prime; also (C -37)/36 = 293, prime; also (C - 43)/42 = 251, prime; also (C 73)/(73*2) = 73, prime;
: $\quad C=5841$ and $(C-5) / 4=37 * 107$, semiprime such that 107 - $37+1=71$, prime; also ($\mathrm{C}-11$)/10 = 1583, prime; also ($\mathrm{C}-13$)/12 = 1319, prime; also $(\mathrm{C}-61) / 60=263$, prime; also (C - 67)/66 = 239, prime; also (C - 73)/72 = 3*73, semiprime such that $73-3+1=71$, prime; also (C - 89)/88 = 179, prime; also (C - 97)/(96*2^2) = 41, prime;
: $\quad C=29341$ and $(C-7) / 6=4889$, prime; also (C - 31)/30 = 977, prime; also (C - 61)/(60*2^3) = 61, prime.

