Curiosity about Henry Dudeney's Curious Numbers

Hitesh Jain*
htjain89@gmail.com

Abstract:
To find Henry Dudeney's Curious Numbers using pattern.
Introduction:
In "Amusements in Mathematics", Henry Ernest Dudeney [1] observes the following curiosity:

Curious Numbers
The number 48 has this peculiarity, that if you add 1 to it the result is a square number (49, the square of 7), and if you add 1 to its half, you also get a square number (25 , the square of 5). Now, there is no limit to the numbers that have this peculiarity, and it is an interesting puzzle to find three more of them-the smallest possible numbers. What are they?

Solution:
The three smallest numbers, in addition to 48 , are $1,680,57,120$, and $1,940,448$. It will be found that 1,681 and $841,57,121$ and $28,561,1,940,449$ and 970,225 , are respectively the squares of 41 and 29, 239 and 169, 1,393 and 985.

48, 1680, 57120, 1940448, 65918160, 2239277040, 76069501248, 2584123765440, 87784138523760, 2982076586042448, 101302819786919520, 3441313796169221280, ..

Pattern

Really these are very curious numbers and we can find numbers also by following pattern $1{ }^{\text {st }}$ Number is 48

$$
\left(\frac{48}{2}+1\right)=25=5^{2} \quad \text { and } \quad 48+1=49=7^{2}
$$

With $1^{\text {st }}$ number 48, we got squares of 5 and 7.
$2^{\text {nd }}$ Number is 1680
$\left(\frac{1680}{2}+1\right)=841=29^{2} \quad$ and $\quad 1680+1=1681=41^{2}$
With $2^{\text {nd }}$ number 1680 , we got squares of 29 and 41
$5 \times 3+7 \times 2=29$ and $5 \times 4+7 \times 3=41$
$3^{\text {rd }}$ Number is 57120
$\left(\frac{57120}{2}+1\right)=169^{2} \quad$ and $\quad 57120+1=239^{2}$
With $3^{\text {rd }}$ number we got squares of 169 and 239
$3 \times 29+2 \times 41=169 \quad$ and $4 \times 29+3 \times 41=239$
$4^{\text {th }}$ Number is 1940448
$\left(\frac{1940448}{2}+1\right)=985^{2} \quad$ and $\quad 1940448+1=1393^{2}$
With $4^{\text {th }}$ number we got squares of 985 and 1393
$3 \times 169+2 \times 239=985$ and $4 \times 169+3 \times 239=1393$
Similar can be used for next numbers.

Acknowledgement:

I would like to thank Dr. Chandramouli Joshi and Dr. Rajesh Kumar Thakur of All India Ramanujan Maths Club, Rajkot for their valuable suggestions and support throughout this work.

References:

[1] Gutenberg Project. Dudeney, H.E., Amusements in Mathematics, 1917.
*
Hitesh Jain
c/o Renaissance Educare
311,312 Turqoise, CG Road,
Panchvati Cross road Ahmedabad-38
India.

