Using formula for searching a prime number in the interval $\left[p_{m}, p_{m+1}^{2}\right]$
 Nguyen Van Quang

Abstract

There is now no a method for searching a prime number in the interval $\left[p_{m}, p_{m+1}^{2}\right]$ by using formula, and there is no known useful formula that sets apart all prime numbers from composites. In this paper, we try to use a formula for searching a prime number in the interval [$\left.p_{m}, p_{m+1}^{2}\right]$, if a complete list of prime numbers up to p_{m} is known, and we also give an open problem on this formula.

1.Introduce

We have known the famous Euclid's proof by formula $N=2.3 .5 \ldots p_{m-1} \cdot p_{m}+1$, the primality test by using formula $N=n!\pm 1$. Assume $p_{m} \leqslant n<p_{m+1}$, then N is not divisible by all prime numbers $\leqslant p_{m}$, but they require more test, since $\sqrt{N}>p_{m+1}$ if $p_{m} \geq 7$ in these formulas, and they do not give a value which is belong to the interval [p_{m}, p_{m+1}^{2}].

2.Using formula for searching a prime number in the interval $\left[p_{m}, p_{m+1}^{2}\right.$]

Let be given prime numbers from 2 to p_{m}, we divide these prime numbers into two groups, the first group contains prime numbers $p_{1}, p_{2}, \ldots, p_{k}$, we make the first product: $p_{1}^{\alpha_{1}} . p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$, the second group contains remaining prime numbers $q_{1}, q_{2}, \ldots, q_{h}$, and we make the second product: $q_{1}^{\beta_{1}} \cdot q_{2}^{\beta_{2}} \ldots q_{h}^{\beta_{h}}$.
Here: α_{i}, β_{j} are powers, $\max \left\{p_{k}, q_{h}\right\}=p_{m}$
Then make absolute value of difference of two products:

$$
N=\left|p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}-q_{1}^{\beta_{1}} \cdot q_{2}^{\beta_{2}} \ldots q_{h}^{\beta_{h}}\right|
$$

N is not divisible by any prime numbers from 2 to p_{m}, and N can be following values:
a. $N=1$.
b. $p_{m}<N<p_{m+1}^{2}$, then N is a prime number, since N is not divisible by any prime number $\leq \sqrt{N}$.
c. $N \geq p_{m+1}^{2}$, then N is a prime number or a composite of two or more prime factors, each of them is equal or lager than p_{m+1}.

If p_{m+1} is unknown, since $p_{m+1} \geq p_{m}+2$, so if $N<\left(p_{m}+2\right)^{2}$, then N is certain a prime number.
Example 1: Given list of prime numbers up to $p_{k}=7$
Apply above formula, we obtain some prime numbers : $7<N<11^{2}$ as follows:

$$
\begin{aligned}
N_{1} & =\left|3.5 .7-2^{7}\right|=23 \\
N_{2} & =\left|3.5 .7-2^{6}\right|=41 \\
N_{3} & =\left|3.5 .7-2^{5}\right|=73 \\
N_{4} & =\left|3.5 .7-2^{4}\right|=89 \\
N_{5} & =\left|3.5 .7-2^{3}\right|=97 \\
N_{6} & =\left|3.5 .7-2^{2}\right|=101 \\
N_{7} & =|3.5 .7-2|=103 \\
N_{8} & =|3.7-2.5|=11 \\
N_{9} & =\left|3^{2} .7-2.5^{2}\right|=13 \\
N_{10} & =\left|3^{2} .7-2.5\right|=53 \\
N_{11} & =\left|3^{2} .7-2^{2} .5^{2}\right|=37
\end{aligned}
$$

Example 2: $p_{k}=11, p_{k+1}=13$:
We obtain some prime numbers: $11<N<13^{2}$

$$
\begin{aligned}
& N_{1}=|2.5 .7-3.11|=37 \\
& N_{2}=\left|2^{2} .5 .7-3.11\right|=107 \\
& N_{3}=|2.7 .11-3.5|=139
\end{aligned}
$$

As Euclid's proof, this formula is the same way to prove that set of prime numbers is infinite.

3.Open problem on formula $N=\mid p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}-$

 $q_{1}^{\beta_{1}} \cdot q_{2}^{\beta_{2}} \ldots q_{h}^{\beta_{h}} \mid$Consider all prime numbers in the interval $\left[7,11^{2}\right]$, and express them by above formula:

$$
\begin{aligned}
11 & =3.7-2.5 \\
13 & =3^{2} .7-2.5^{2} \\
17 & =5.7-2.3^{2} \\
19 & =5.2^{3}-3.7 \\
23 & =2^{7}-3.5 .7 \\
29 & =5.7-2.3 \\
31 & =5^{2} .7-2^{4} .3^{2} \\
37 & =2.3 .7-5 \\
41 & =2^{3} .7-3.5 \\
43 & =3^{2} .7-2^{2} .5 \\
47 & =3.7^{2}-2^{2} .5^{2} \\
53 & =2^{2} .3 .5-7 \\
59 & =2^{2} .3 .7-5^{2} \\
61 & =2.5 .7-3^{2} \\
67 & =2^{4} .7-3^{2} .5 \\
71 & =2^{3} .3 .5-7^{2} \\
73 & =3.5 .7-2^{5} \\
79 & =2^{2} .3 .7-5 \\
83 & =2.7^{2}-3.5 \\
89 & =3^{3} .5 .7-2^{4} \\
97 & =2^{4} .7-3.5 \\
101 & =2.3^{2} .7-5^{2} \\
103 & =3.5 .7-2 \\
107 & =3^{3} .5-2^{2} .7 \\
109 & =3^{3} .7-2^{4} .5 \\
113 & =2^{3} .3 .5-7
\end{aligned}
$$

Open problem: Does above formula give all prime numbers in the interval[p_{m}, p_{m+1}^{2}. In other words, can any prime numbers be expressed by this formula.

Reference

- Prime number- Wikipedia

Emai: quangnhu67@yahoo.com.vn
Hue City-Vietnam

