Notable observation on the squares of primes of the form 10k+1

Marius Coman email: mariuscoman13@gmail.com

Abstract. In this paper I conjecture that for any square of prime of the form $p^2 = 10k + 1$, p greater than or equal to 11, is true that there exist at least one prime q, q lesser than p, such that $r = (p^2 - q)/(q - 1)$ is prime and, in case that this conjecture turns out not to be true, I considered three related "weaker" conjectures.

Conjecture:

For any square of prime of the form $p^2 = 10k + 1$, p greater than or equal to 11, is true that there exist at least one prime q, q lesser than p, such that $r = (p^2 - q)/(q - 1)$ is prime.

Verifying the conjecture:

(for the first ten primes p with the property mentioned)

: p	=	11	and	p^2	=	121;	(p^2 -	- 5)/	4	=	29,	prime;
-----	---	----	-----	-----	---	------	--------	-------	---	---	-----	--------

:	р	=	19	and	p^2	= 36	51; (j	p^2 -	5)	/4 =	89,	prime;	also	(p^2
	-	7)	/6	= 59	, pr	ime;	also	(p^2	- 1	13)/1	.2 =	29, pri	me;	

- : p = 29 and $p^2 = 841$; $(p^2 7)/6 = 139$, prime; also $(p^2 11)/10 = 83$, prime;
- : p = 31 and p² = 961; (p² 5)/4 = 239, prime; also (p² 13)/12 = 79, prime; also (p² 17)/16 = 59, prime;
- : p = 41 and p^2 = 1681; (p^2 5)/4 = 419, prime; also (p^2 - 11)/10 = 167, prime; also (p^2 - 13)/12 = 139, prime; also (p^2 - 29)/28 = 59, prime;
- : p = 59 and $p^2 = 3481$; $(p^2 11)/10 = 347$, prime;
- : p = 61 and $p^2 = 3721$; $(p^2 5)/4 = 929$, prime; also $(p^2 7)/6 = 619$, prime;
- : p = 71 and p^2 = 3721; (p^2 5)/4 = 1259, prime; also (p^2 - 7)/6 = 839, prime; also (p^2 - 11)/10 = 503, prime; also (p^2 - 13)/12 = 419, prime; also (p^2 -29)/28 = 179, prime; also (p^2 - 31)/30 = 167, prime; also (p^2 - 37)/36 = 139, prime; also (p^2 - 61)/60 = 83, prime;
- : p = 79 and $p^2 = 6241$; $(p^2 5)/4 = 1559$, prime; also $(p^2 7)/6 = 1039$, prime; also $(p^2 17)/16 = 389$, prime; also $(p^2 61)/60 = 103$, prime;

: p = 89 and p^2 = 7921; (p^2 - 5)/4 = 1979, prime; also (p^2 - 7)/6 = 1319, prime; also (p^2 - 13)/12 = 659, prime; also (p^2 - 19)/18 = 439, prime; also (p^2 -23)/22 = 359, prime; also (p^2 - 31)/30 = 263, prime; also (p^2 - 41)/40 = 197, prime; also (p^2 - 61)/60 = 131, prime; also (p^2 - 73)/72 = 109, prime.

Note:

In case that the conjecture above turns out not to be true there are three "weaker" conjectures that may be considered:

(i) For any square of prime of the form p² = 10k + 1, p greater than or equal to 11, is true that there exist at least one prime q, q lesser than p, such that r = (p² - q)/(q - 1) is prime or a power of prime.

Example: : p = 59, p² = 3481, (p² - 13)/12 = 17², square of prime.

(ii) For any square of prime of the form $p^2 = 10k + 1$, p greater than or equal to 11, is true that there exist at least one prime q, q lesser than p, such that $r = (p^2 - q)/(q - 1)$ is prime or semiprime m*n, n > m, with the property that n - m + 1 is prime or power of prime or n + m - 1 is prime or power of prime.

Examples:

- : p = 61, $p^2 = 3721$, $(p^2 11)/10 = 7*53$ and 53 - 7 + 1 = 47, prime; also 53 + 7 - 1 = 59, prime;
- : p = 71, $p^2 = 5041$, $(p^2 43)/42 = 7*17$ and 17 - 7 + 1 = 11, prime; also 17 + 7 - 1 = 23, prime.
- (iii)For any square of prime of the form $p^2 = 10k + 1$, p greater than or equal to 11, is true that there exist at least one prime q, q lesser than p, such that $r = (p^2 - q)/((q - 1)*2^n))$ is prime.

Examples:

- : p = 61, p^2 = 3721, (p^2 41)/(40*2^2) = 23, prime; : p = 71, p^2 = 5041, (p^2 - 17)/(16*2) = 157,
- : p = 71, p^2 = 5041, (p^2 17)/(16*2) = 157, prime.