Notable observation on the squares of primes of the form 10k+1

Marius Coman

email: mariuscoman13@gmail.com

Abstract

In this paper I conjecture that for any square of prime of the form $p^{\wedge} 2=10 k+1, p$ greater than or equal to 11, is true that there exist at least one prime q, q lesser than p, such that $r=\left(p^{\wedge} 2-q\right) /(q-1)$ is prime and, in case that this conjecture turns out not to be true, I considered three related "weaker" conjectures.

Conjecture:

For any square of prime of the form $\mathrm{p}^{\wedge} 2=10 \mathrm{k}+1, \mathrm{p}$ greater than or equal to 11 , is true that there exist at least one prime q, q lesser than p, such that $r=\left(p^{\wedge} 2-\right.$ $q) /(q-1)$ is prime.

Verifying the conjecture:

(for the first ten primes p with the property mentioned)

```
: p = 11 and p^2 = 121; ( }\mp@subsup{\textrm{p}}{}{\wedge}2-5)/4 = 29, prime;
: p = 19 and p^2 = 361; ( }\mp@subsup{\textrm{p}}{}{\wedge}2-5)/4 = 89, prime; also ( p^2
    - 7)/6 = 59, prime; also (p^2 - 13)/12 = 29, prime;
    p = 29 and p^2 = 841; ( p^2 - 7)/6 = 139, prime; also (p^2
    - 11)/10 = 83, prime;
    p = 31 and p^2 = 961; ( }\mp@subsup{\textrm{p}}{}{\wedge}2 - 5)/4 = 239, prime; also (p^2
    - 13)/12 = 79, prime; also (p^2 - 17)/16 = 59, prime;
: p = 41 and p^2 = 1681; ( p^2 - 5)/4 = 419, prime; also
    (p^2 - 11)/10 = 167, prime; also ( }\mp@subsup{p}{}{\wedge}2-13)/12 = 139,
    prime; also (p^2 - 29)/28 = 59, prime;
: p = 59 and p^2 = 3481; ( p^2 - 11)/10 = 347, prime;
: p = 61 and p^2 = 3721; ( }\mp@subsup{\textrm{p}}{}{\wedge}2 - 5)/4 = 929, prime; also
    (p^2 - 7)/6 = 619, prime;
    : p = 71 and p^2 = 3721; ( p^2 - 5)/4 = 1259, prime; also
        (p^2 - 7)/6 = 839, prime; also (p^2 - 11)/10 = 503,
        prime; also (p^2 - 13)/12 = 419, prime; also (p^2 -
        29)/28 = 179, prime; also (p^2 - 31)/30 = 167, prime;
        also (p^2 - 37)/36 = 139, prime; also (p^2 - 61)/60 = 83,
        prime;
: p = 79 and p^2 = 6241; ( p^2 - 5)/4 = 1559, prime; also
    (p^2 - 7)/6 = 1039, prime; also (p^2 - 17)/16 = 389,
    prime; also (p^2 - 61)/60 = 103, prime;
```

: $\quad \mathrm{p}=89$ and $\mathrm{p}^{\wedge} 2=7921 ;\left(\mathrm{p}^{\wedge} 2-5\right) / 4=1979$, prime; also $\left(p^{\wedge} 2-7\right) / 6=1319, ~ p r i m e ; ~ a l s o\left(p^{\wedge} 2-13\right) / 12=659$, prime; also ($\left.\mathrm{p}^{\wedge} 2-19\right) / 18=439$, prime; also ($\mathrm{p}^{\wedge} 2$ 23)/22 = 359, prime; also ($\left.\mathrm{p}^{\wedge} 2-31\right) / 30=263$, prime; also ($\left.\mathrm{p}^{\wedge} 2-41\right) / 40=197$, prime; also ($\mathrm{p}^{\wedge} 2-61$)/60= 131, prime; also ($\left.\mathrm{p}^{\wedge} 2-73\right) / 72=109$, prime.

Note

In case that the conjecture above turns out not to be true there are three "weaker" conjectures that may be considered:
(i) For any square of prime of the form $p^{\wedge} 2=10 k+1, p$ greater than or equal to 11, is true that there exist at least one prime q, q lesser than p, such that $r=\left(p^{\wedge} 2-q\right) /(q-1)$ is prime or a power of prime.

Example:

$$
\begin{aligned}
& : \quad \mathrm{p}=59, \mathrm{p}^{\wedge} 2=3481,\left(\mathrm{p}^{\wedge} 2-13\right) / 12=17 \wedge 2, \\
& \text { square of prime. }
\end{aligned}
$$

(ii) For any square of prime of the form $p^{\wedge} 2=10 k+1, p$ greater than or equal to 11 , is true that there exist at least one prime q, q lesser than p, such that $r=\left(p^{\wedge} 2-q\right) /(q-1)$ is prime or semiprime $m * n, n>m$, with the property that $n-m+1$ is prime or power of prime or $n+m-1$ is prime or power of prime.

Examples:

```
: p = 61, p^2 = 3721, ( p^2 - 11)/10 = 7*53 and 53
    - 7 + 1 = 47, prime; also 53 + 7 - 1 = 59,
    prime;
: p = 71, p^2 = 5041, ( p^2 - 43)/42 = 7*17 and 17
    - 7 + 1 = 11, prime; also 17 + 7 - 1 = 23,
    prime.
```

(iii) For any square of prime of the form $p^{\wedge} 2=10 k+1, p$ greater than or equal to 11, is true that there exist at least one prime q, q lesser than p, such that $\left.r=\left(p^{\wedge} 2-q\right) /\left((q-1) * 2^{\wedge} n\right)\right)$ is prime.

Examples:

```
: p = 61, p^2 = 3721, ( p^2 - 41)/(40*2^2) = 23,
    prime;
: p = 71, p^2 = 5041, (p^2 - 17)/(16*2) = 157,
    prime.
```

