Notable observation on the squares of primes of the form $10 \mathrm{k}+9$

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I conjecture that for any square of prime of the form $\mathrm{p}^{\wedge} 2=10 \mathrm{k}+9, \mathrm{p}$ greater than or equal to 7 , is true that there exist at least one prime q, q lesser than p, such that $r=\left(p^{\wedge} 2-q\right) /(q-1)$ is prime and, in case that this conjecture turns out not to be true, I considered three related "weaker" conjectures.

Conjecture:

For any square of prime of the form $\mathrm{p}^{\wedge} 2=10 \mathrm{k}+9, \mathrm{p}$ greater than or equal to 7, is true that there exist at least one prime q, q lesser than p, such that $r=\left(p^{\wedge} 2-\right.$ $q) /(q-1)$ is prime.

Verifying the conjecture:

(for the first twenty primes p with the property mentioned)

```
: p = 7 and p^2 = 49; ( }\mp@subsup{\textrm{p}}{}{\wedge}2-5)/4=11, prime, so [q
    r] = [5, 11];
: p = 13 and p^2 = 169; ( }\mp@subsup{\textrm{p}}{}{\wedge}2-5)/4=41, prime, s
        [q, r] = [5, 41];
: p = 17 and p^2 = 289; ( }\mp@subsup{p}{}{\wedge}2-7)/6=47, prime, s
        [q, r] = [7, 47];
: p = 23 and ( }\mp@subsup{\textrm{p}}{}{\wedge}2=529; ( p^2 - 5)/4 = 131, prime, s
        [q, r] = [5, 131]; also (p^2 - 13)/12 = 43, prime,
        so [q, r] = [13, 43];
: p = 37 and p^2 = 1369; ( }\mp@subsup{\textrm{p}}{}{\wedge}2-7)/6=227, prime, s
        [q, r] = [7, 227]; also (p^2 - 13)/12 = 113, prime,
        so [q, r] = [13, 113];
: p = 43 and p^2 = 1849; ( p^2 - 5)/4 = 461, prime, so
        [q, r] = [5, 461]; also (p^2 - 7)/6 = 307, prime,
        so [q, r] = [7, 307]; also (p^2 - 23)/22 = 83,
        prime, so [q, r] = [23, 83];
```

```
: p = 47 and p^2 = 2209; (p^2 - 7)/6 = 367, prime, so
        [q, r] = [7, 367]; also (p^2 - 17)/16 = 137, prime,
        so [q, r] = [17, 137];
: p = 53 and p^2 = 2809; (p^2 - 5)/4 = 701, prime, so
        [q, r] = [5, 701]; also (p^2 - 7)/6 = 467, prime,
        so [q, r] = [7, 467]; also (p^2 - 13)/12 = 233,
        prime, so [q, r] = [13, 233];
: p = 67 and p^2 = 4489; (p^2 - 13)/12 = 373, prime,
    so [q, r] = [13, 373];
: p = 73 and p^2 = 5329; (p^2 - 7)/6 = 887, prime, so
        [q, r] = [7, 887]; also (p^2 - 13)/12 = 443, prime,
        so [q, r] = [13, 443];
: p = 83 and p^2 = 6889; ( }\mp@subsup{\textrm{p}}{}{\wedge}2 - 5)/4 = 1721, prime,
        so [q, r] = [5, 1721]; also (p^2 - 43)/42 = 163,
        prime, so [q, r] = [43, 163];
: p = 97 and p^2 = 9409; (p^2 - 5)/4 = 2351, prime,
        so [q, r] = [5, 2351]; also (p^2 - 7)/6 = 1567,
        prime, so [q, r] = [7, 1567]; also (p^2 - 17)/16 =
        587, prime, so [q, r] = [17, 587]; also (p^2 -
        43)/42 = 223, prime, so [q, r] = [43, 223];
: p = 103 and p^2 = 10609; (p^2 - 13)/12 = 883, prime,
        so [q, r] = [13, 883];
: p = 107 and p^2 = 11449; (p^2 - 5)/4 = 2861, prime,
        so [q, r] = [5, 2861]; also (p^2 - 7)/6 = 1907,
        prime, so [q, r] = [7, 1907]; also (p^2 - 13)/12 =
        953, prime, so [q, r] = [13, 953]; also (p^2 -
        37)/36 = 317, prime, so [q, r] = [37, 317];
: p = 113 and p^2 = 12769; (p^2 - 5)/4 = 3191, prime,
        so [q, r] = [5, 3191]; also (p^2 - 13)/12 = 1063,
        prime, so [q, r] = [13, 1063]; also (p^2 - 17)/16 =
        797, prime, so [q, r] = [17, 797];
: p = 127 and p^2 = 16129; ( p^2 - 7)/6 = 2687, prime,
        so [q, r] = [7, 2687]; also (p^2 - 43)/42 = 383,
        prime, so [q, r] = [43, 383]; also (p^2 - 73)/72 =
        223, prime, so [q, r] = [73, 223]; also (p^2 -
        97)/96 = 167, prime, so [q, r] = [97, 167];
: p = 137 and p^2 = 18769; ( p^2 - 5)/4 = 4691, prime,
        so [q, r] = [5, 4691]
: p = 157 and p^2 = 24649; (p^2 - 13)/12 = 2053,
        prime, so [q, r] = [13, 2053];
```

```
: p = 163 and p^2 = 26569; (p^2 - 13)/12 = 2213,
    prime, so [q, r] = [13, 2213];
: p = 167 and p^2 = 27889; (p^2 - 5)/4 = 6971, prime,
    so [q, r] = [5, 6971].
```


Note:

In case that the conjecture above turns out not to be true there are three "weaker" conjectures that may be considered:
(i) For any square of prime of the form $p^{\wedge} 2=10 k+9, p$ greater than or equal to 7, is true that there exist at least one prime q, q lesser than p, such that $r=$ ($p^{\wedge} 2$ - q)/(q - 1) is prime or a power of prime.

Example:

$$
: \quad p=73, p^{\wedge} 2=5329,\left(p^{\wedge} 2-5\right) / 4=11 \wedge 3 .
$$

(ii) For any square of prime of the form $\mathrm{p}^{\wedge} 2=10 \mathrm{k}+9, \mathrm{p}$ greater than or equal to 7, is true that there exist at least one prime q, q lesser than p, such that $r=$ ($\mathrm{p}^{\wedge} 2$ - q)/(q - 1) is prime or semiprime $m^{\star} n, n>m$, with the property that $n-m+1$ is prime or power of prime or $n+m$ - 1 is prime or power of prime.

Examples:

```
: p = 67, p^2 = 4489, (p^2 - 5)/4 = 19*59 and 59
    - 19 + 1 = 41;
: p = 53, p^2 = 2809, (p^2 - 19)/18 = 5*31 and 31
    - 5 + 1 = 3^3;
    : p = 127, p^2 = 16129, (p^2 - 113)/112 = 11*13
    and 13 + 11 - 1 = 23.
```

(iii) For any square of prime of the form $\mathrm{p}^{\wedge} 2=10 \mathrm{k}+9, \mathrm{p}$ greater than or equal to 7, is true that there exist at least one prime q, q lesser than p, such that $r=$ ($\left.\left.p^{\wedge} 2-q\right) /\left((q-1) * 2^{\wedge} n\right)\right)$ is prime.

Examples:

```
: p = 113, p^2 = 11449, (p^2 - 73)/(72*2) = 79;
: p = 137, p^2 = 18769, (p^2 - 17)/(16*2^2) =
    293;
    : p = 167, p^2 = 27889, (p^2 - 113)/(112*2^3) =
    31.
```

