Conjecture on Poulet numbers of the form $9 m n \wedge 3+3 n^{\wedge} 3-$ $15 m n^{\wedge} 2+6 m n-2 n^{\wedge} 2$

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I observe that the formula $9 * m * n \wedge 3+3 * n^{\wedge} 3-15 * m * n \wedge 2+6 * m * n-2 * n^{\wedge} 2$ produces Poulet numbers, and I conjecture that this formula produces an infinite sequence of Poulet numbers for any m non-null positive integer.

Conjecture:

The formula $9 * m^{\star} n^{\wedge} 3+3 * n^{\wedge} 3-15 * m^{\star} n^{\wedge} 2+6 * m * n-2 * n^{\wedge} 2$ produces an infinite sequence of Poulet numbers for any m non-null positive integer.

Examples:

Formula becomes $12^{*} n^{\wedge} 3-17 \star^{*} n^{2}+6 *_{n}$ for $m=1$ and we have the following sequence of Poulet numbers $P=12 * n \wedge 3$ $-17 \star_{n} \wedge 2+6 * n$ (obtained for $n=5,11,23,29,35,65$, 71, ...):
: 1105, 13981, 137149, 278545, 493885, 3224065, 4209661 (...)

Note that all the solutions obtained for n so far (up to $n=71$) are of the form $6 k-1$.

Formula becomes $21 * n^{\wedge} 3-32 * n^{\wedge} 2+12 * n$ for $m=2$ and we have the following sequence of Poulet numbers $P=21 * n^{\wedge} 3$ - $32 \star \mathrm{n}^{\wedge} 2+12 * \mathrm{n}$ (obtained for $\mathrm{n}=65, \ldots$):
: 5632705 (...)

Formula becomes $30 \star_{n}{ }^{\wedge} 3-47 \star_{n} \wedge 2+18{ }^{*} n$ for $m=3$ and we have the following sequence of Poulet numbers $P=30 * n \wedge 3$ $-47 \star_{n} \wedge 2+18 * n$ (obtained for $n=23,43,53,103, \ldots$): : 340561, 2299081, 4335241, 32285041 (...)

Note that all the solutions obtained for n so far (up to $n=103$) are of the form $10 k+3$.

Formula becomes $39 \star_{n} \wedge 3-62 *_{n} \wedge 2+24 * n$ for $m=4$ and we have the following sequence of Poulet numbers $P=39 * n^{\wedge} 3$ - 62*n^2 + 24*n (obtained for $n=43, \ldots$):
: 2987167 (...)

Formula becomes $48 *_{n}{ }^{\wedge} 3-77 *_{n} \wedge 2+30 * n$ for $m=5$ and we have the following sequence of Poulet numbers $P=48 * n \wedge 3$ - 77*n^2 + 30*n (obtained for $n=29,37,77 . ..):$: 1106785, 2327041, 21459361 (...)

Note that all the solutions obtained for n so far (up to $n=77$) are of the form $8 k+5$.

