Conjecture on Poulet numbers of the form $8 m n^{\wedge} 3+40 n^{\wedge} 3+38 n^{\wedge} 2+6 m n^{\wedge} 2+m n+11 n+1$

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I observe that the formula $8 *^{*}{ }^{*} n^{\wedge} 3+40{ }^{*} n^{\wedge} 3+38{ }^{*} n^{\wedge} 2+6 *_{m}{ }^{*} n^{\wedge} 2+m{ }^{*} n+11 * n+1$ produces Poulet numbers, and I conjecture that this formula produces an infinite sequence of Poulet numbers for any m non-null positive integer.

Conjecture:

The formula $8 * m * n^{\wedge} 3+40 * n^{\wedge} 3+38 * n^{\wedge} 2+6 * m * n^{\wedge} 2+m * n+$ $11 * n+1$ produces an infinite sequence of Poulet numbers for any m non-null positive integer.

Examples:

Formula becomes $48 * n^{\wedge} 3+44 * n^{\wedge} 2+12 * n+1$ for $m=1$ and we have the following sequence of Poulet numbers $\mathrm{P}=$ $48 *_{n}{ }^{\wedge} 3+44 \star_{n} \wedge 2+12 *_{n}+1$ (obtained for $n=3,7,15$, $18,33,45,66 \ldots):$
: 1729, 18705, 172081, 294409, 1773289, 4463641, 13992265 (...)

Formula becomes $56{ }^{*} \mathrm{n}^{\wedge} 3+50 * \mathrm{n}^{\wedge} 2+13 * \mathrm{n}+1$ for $m=2$ and we have the following sequence of Poulet numbers $\mathrm{P}=$ $56{ }^{*} n^{\wedge} 3+50{ }^{\wedge} n^{\wedge} 2+13 * n+1$ (obtained for $n=64, \ldots$) : 14885697 (...)

Formula becomes $64^{*} n^{\wedge} 3+56{ }^{*} n^{\wedge} 2+14 * n+1$ for $m=3$ and we have the following sequence of Poulet numbers $\mathrm{P}=$ $64{ }^{*} n^{\wedge} 3+56{ }^{*} n^{\wedge} 2+14 * n+1$ (obtained for $n=44, \ldots$) : 5560809 (...)

Formula becomes $80 *_{n} \wedge 3+68 *_{n} \wedge 2+16 \star_{n}+1$ for $m=5$ and we have the following sequence of Poulet numbers $\mathrm{P}=$ $80 *_{n} \wedge 3+68 *_{n}{ }^{\wedge} 2+16 \star_{n}+1$ (obtained for $n=3,9,15$, $18,45 \ldots):$
: 2821, 63973, 285541, 488881, 7428421 (...)
Note that all the solutions obtained for n so far (up to $n=45$) are of the form $3 k$.

```
Formula becomes 112*n^3 + 92*n^2 + 20*n + 1 for m = 9 and
we have the following sequence of Poulet numbers P =
112* n^3 + 92* n^2 + 20*n + 1 (obtained for n = 15, 45,
...):
: 399001, 10393201 (...)
```

