Three cubic polynomials that generate sequences of Poulet numbers

Marius Coman
email: mariuscoman13@gmail.com

Abstract. In this paper I present three cubic polynomials that generate (probably infinite) sequences of Poulet numbers.

I.

Poulet numbers of the form $240 *_{n} \wedge 3-2708 *_{n} \wedge 2+10172 *_{n}$ 12719:

$$
: \quad 340561, \quad 2299081, \quad 4335241, \quad 8041345, \quad 32085041 \text {, }
$$

$$
153927961,321524281 \text { (...) }
$$

These numbers were obtained for the following values of n:
: 15, 25, 30, 36, 55, 90, 114 (...)

Conjecture:

There are infinite many Poulet numbers of the form $240 \star_{n}{ }^{\wedge} 3-2708 \star_{n} \wedge 2+10172 * n-12719$ (see A182132 posted by me on OEIS for a subsequence of the sequence from above, i.e. Carmichael numbers of the form (30*n $7) *(90 * n-23) *(300 * n-79)$ 。

II.

Poulet numbers of the form $80 *_{n} \wedge 3+788 *_{n} \wedge 2+2584 *_{n}+2821$:
: 2821, 63973, 285541, 488881, 7428421(...)
These numbers were obtained for the following values of n:

$$
: \quad 0,6,12,15,42(\ldots)
$$

Conjecture:

There are infinite many Poulet numbers of the form $80{ }^{*} n^{\wedge} 3$ $+788 * n^{\wedge} 2+2584 * n+2821$ (see A182085 posted by me on OEIS for a subsequence of the sequence from above, i.e. Carmichael numbers of the form (30*n +7)* (60*n + 13)*(150*n + 31).

Poulet numbers of the form $120 *_{n}{ }^{\wedge} 3-3148 *_{n}{ }^{\wedge} 2+27522 * n-$ 80189:
: 29341, 1152271, 11875821, 16158331, 34901461 (...)

These numbers were obtained for the following values of n:

```
: 15, 30, 55, 60, 75 (...)
```


Conjecture:

There are infinite many Poulet numbers of the form $120 * n^{\wedge} 3-3148 * n^{\wedge} 2+27522 * n-80189$ (see A182133 posted by me on OEIS for a subsequence of the sequence from above, i.e. Carmichael numbers of the form (30*n $17) *(90 * \mathrm{n}-53) *\left(150{ }^{2} \mathrm{n}-89\right)$.

