Two conjectures on Poulet numbers of the form $m n^{\wedge} 2+11 m n-23 n+19 m-49$

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I observe that the formula $m^{\star} n^{\wedge} 2$ $+11 * m * n-23 * n+19 * m-49$ produces Poulet numbers, and I conjecture that this formula produces an infinite sequence of Poulet numbers for any m non-null positive integer, respectively for any n non-null positive integer.

Conjecture 1:

The formula $m^{*} n^{\wedge} 2+11 * m * n-23 * n+19 * m-49$ produces an infinite sequence of Poulet numbers for any n non-null positive integer.

Examples:

Formula becomes $31 * m-72$ for $n=1$ and we have the following sequence of Poulet numbers $P=31 * m-72$ (obtained for $m=259,367,5111$): : 7957, 11305, 158369 (...)

Formula becomes $45 * m-95$ for $n=2$ and we have the following sequence of Poulet numbers $P=45 * m-95$ (obtained for $m=888,928,2384)$:
: 39865, 41665, 107185(...)

Formula becomes $61 * m-118$ for $n=3$ and we have the following sequence of Poulet numbers $P=61 * m-118$ (obtained for $m=329$, 379):
: 19951, 23001(...)
Formula becomes $99 * m-164$ for $n=5$ and we have the following sequence of Poulet numbers $P=99 * m-164$ (obtained for $m=319,659,1387$):

```
: 31417, 65077, 137149(...)
```


Conjecture 2:

The formula $m * n \wedge 2+11 * m * n-23 * n+19 * m-49$ produces an infinite sequence of Poulet numbers for any m non-null positive integer.

Examples:

Formula becomes $3 * n^{\wedge} 2+10 * n+8$ for $m=3$ and we have the following sequence of Poulet numbers $P=3 * n^{\wedge} 2+10 * n$ +8 (obtained for $n=9,13,27,29,35,41,51,71,91$, 101, 149, 165):
: 341, 645, 2465, 2821, 4033, 5461, 8321, 15841, 25761, 31621, 68101, 83333 (...)

Formula becomes $4{ }^{*} n^{\wedge} 2+21 * n+27$ for $m=4$ and we have the following sequence of Poulet numbers $P=4{ }^{*} n^{\wedge} 2+21^{*} n$ +27 (obtained for $n=14,16,20,26,38,56,62,68$, 86, 134, 142, 146, 148):
: 1105, 1387, 2047, 3277, 6601, 13747, 16705, 19951, $31417,83665,88357,90751$ (...)

