Generic form for a probably infinite sequence of Poulet numbers ie $4 n^{\wedge} 2+37 n+85$

Marius Coman
email: mariuscoman13@gmail.com

Abstract. In this paper I observe that the formula $4{ }^{*} n^{\wedge} 2$ $+37 * n+85$ produces Poulet numbers, and I conjecture that this formula is generic for an infinite sequence of Poulet numbers.

The sequence of Poulet numbers of the form $4 *_{n} \wedge 2+37 *_{n}+85$:

: 1105, 1387, 2047, 3277, 6601, 13747, 16705, 19951, 31417, 74665, 83665, 88357, 90751 (...)

These numbers were obtained for the following values of n:
: 12, 14, 18, 24, 36, 54, 60, 66, 88, 132, 140, 144, 146 (...)

Conjecture:

There are infinite many Poulet numbers of the form $4 * n^{\wedge} 2$ $+37 *_{n}+85$ (see A214017 posted by me on OEIS for a subsequence of the sequence from above, i.e. Poulet numbers of the form $\left.144^{*} n^{\wedge} 2+122 * n+85\right)$.

Observation:

Note that almost all from the first 13 numbers P from the sequence above have a prime factor q of one from the following five forms:
(A) $q=17$ (for $P=1105=5 * 13 * 17$);
(B) \quad i is of the form $17 * m+m+1$ ($q=73=4 * 17+5$ for $\mathrm{P}=1387, \mathrm{q}=109=6 \star 17+7$ for $\mathrm{P}=74665$);
(C) \quad i is of the form $17 * m+m-1$ ($q=89=5 * 17+4$ for $\mathrm{P}=2047$ and $\mathrm{P}=31417 ; \mathrm{q}=233=13 * 17+12$ for $\mathrm{P}=$ 13747, $q=71=4 * 17+3$ for $P=19951$);
(D) \quad i is of the form $17 * m-m+1$ ($q=113=7 * 17-6$ for $P=3277 ; q=257=16 * 17-15$ for $P=13747$; q $=353=22 * 17-21$ for $P=31417, q=577=36 * 17-$ 35 for $P=83665, ~ q=593=37 * 17-36$ for $P=$ 88357);
(E) \quad i is of the form $17 \star m-m-1$.

Exceptions:
: $6601=7 * 23 * 41$; but, even in this case, $7 * 23=161=$ $9 * 17+8$ (case C), 7*41 = 16*17 + 15 (case C), 23*41 = 59*17-60 (case E);
: $\quad 90751=151 * 601$; but, even in this case, $151 * 601=$ 5672*17-5673 (case E).

