Generic form for a probably infinite sequence of Poulet numbers ie $2 n^{\wedge} 2+147 n+2701$

Marius Coman
email: mariuscoman13@gmail.com

Abstract. In this paper I observe that the formula 2 *n^2 $^{\text {^ }}$ $+147 * n+2701$ produces Poulet numbers, and I conjecture that this formula is generic for an infinite sequence of Poulet numbers.

The sequence of Poulet numbers of the form $2 *_{n}{ }^{\wedge} 2+147 * n+$ 2701:

```
: 2701, 4371, 8911, 10585, 18721, 33153, 49141, 93961
```

 (...)
 These numbers were obtained for the following values of n:
: $0,10,30,36,60,92,120,180(. \ldots)$

Conjecture:

There are infinite many Poulet numbers P of the form $2 \star_{n} \wedge 2+147 * n+2701$ (see A214016 posted by me on OEIS for a subsequence of the sequence from above, i.e. Poulet numbers of the form 7200*n^2 + 8820*n + 2701).

Observation:

Note the following interesting facts:

```
: for P = 2701 = 37*73 both 37 (= 2*17 + 3) and 73
    (=4*17 + 5) can be written as 17*m + m + 1, where m
    positive integer;
: for p = 10585 = 5*29*73 both 5*29 = 145 (=8*17 + 9)
    and 73 (=4*17 + 5) can be written as 17*m + m + 1;
: for p = 93961 = 7* 31*433 both 7*31 = 217 (=12*17 +
    13) and 433 (=24*17 + 25) can be written as 17*m + m
    + 1.
: for P = 4371 = 3*31*47 both 31 (= 2*17 - 3) and 47
    (=3*17 - 4) can be written as 17*m - m - 1, where m
    positive integer;
: for P = 18721 = 97*193 both 97 (= 6*17 - 5) and 193
    (=12*17 - 11) can be written as 17*m - m - 1;
: for p = 33153 = 3*43*257 both 3*43 = 129 (=8*17 - 7)
    and 257 (=16*17 - 15) can be written as 17*m - m -
    1.
```


Observation:

Note the following subsequence of the sequence from above, obtained for $n=10 * m$:
: 2701, 4371, 8911, 18721, 49141 93961, 226801, 314821, 534061, 665281, 915981 (...)
obtained for $m=0,1,3,6,12,18,30,36,48,54,64$ (...)

