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Abstract— Digital Surface Models (DSMs) generated from
satellite stereo imagery provide valuable but not comprehensive
information for building change detection. Therefore, belief
functions have been introduced to solve this problem by
fusing DSM information with changes extracted from images.
However, miss-detection can not be avoided if the DSMs are
containing large region of wrong height values. A refined
workflow is thereby proposed by adopting the initial disparity
map to generate a reliability map. This reliability map is then
built in the fusion model. The reliability map has been tested in
both Dempster-Shafer Theory (DST), and Dezert-Smarandache
Theory (DSmT) frameworks. The results have been validated
by comparing to the manually extracted change reference mask.

I. INTRODUCTION

In our previous research [1] [2], belief functions have
performed very well for 3D building change detection. As
we have mentioned, the accuracy of 2D change detection
is limited due to the misdetections caused by irrelevant
changes. These irrelevant changes have a larger effect on
very high resolution (VHR) images since many details of
building changes are expected. The DSMs generated from
satellite stereo imagery can largely help to solve this prob-
lem. However, the DSMs may still exhibit some outliers
resulting in occlusions within the stereo/multi views and due
to matching mistakes. In this case, change information from
spectral information of the original stereo imagery can and
should be used together with height changes to eventually
highlight building changes. For this purpose proper fusion
theories and approaches are needed.

In paper [2], the belief functions introduced in the
Dempster-Shafer Theory (DST) [3] [4], and extended in
Dezert-Smarandache Theory (DSmT) [5] are used to deal
with the uncertainty information delivered from the DSMs. In
[2] the possibility of using Dempter’s fusion rule and the Pro-
portional Conflict Redistribution Rule #6 (PCR6) of DSmT
in our application have been tested. Though improvements
have been proven by comparing to the method stated in [1],
false alarms can not be avoided in case of large regions of
wrong height change values. Thereupon, in this paper the
reliability map is adopted as an additional source of evidence
to correct the basic Belief Assignments (BBAs) and thus
refine the fusion model.

This paper is organized as follow. Firstly, the belief
functions and building change detection fusion models are
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briefly reviewed. Then, the reliability discounting techniques
are presented and the reliability map is generated. Later, the
final four global BBAs are described together with the four
decision criteria with which the final change detection mask
can be generated. In the end, these refined fusion models are
tested on two sets of satellite real data.

II. BELIEF FUNCTION BASED BUILDING CHANGE
DETECTION

A. Basics of belief functions

Detailed presentations of DST and DSmT can be found
in [5], [6] and [3]. Let Θ be a frame of discernment of a
problem under consideration. Θ = {θ1, θ2, . . . , θN} consists
of a list of N exhaustive and mutually exclusive elements
θi, i = 1, 2, . . . , N . Each θi represents a possible state
related to the problem we want to solve. The assumption
of exhaustivity and mutual exclusivity of elements of Θ is
classically referred as Shafer’s model of the frame Θ. A BBA
also called a belief mass function (or just a mass for short),
is a mapping m(.) : 2Θ → [0, 1] from the power set1 of Θ
denoted 2Θ to [0, 1], that verifies [3]:

m(∅) = 0 and
∑
X∈2Θ

m(X) = 1. (1)

m(X) represents the mass of belief exactly committed to
X . An element X ∈ 2Θ is called a focal element if
and only if m(X) > 0. In DST, the combination (fusion)
of several independent sources of evidences is done with
Dempster-Shafer2 (DS) rule of combination, assuming that
the sources are not in total conflict3. DS combination of two
independent BBAs m1(.) and m2(.), denoted symbolically
by DS(m1,m2), is defined by mDS(∅) = 0, and for all
X ∈ 2Θ \ {∅} by:

mDS(X) =
1

1−KDS

∑
X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2), (2)

where the total degree of conflict KDS is given by

KDS ,
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2). (3)

1The power set is the set of all subsets of Θ, empty set included.
2Although the rule has been proposed originally by Dempster, we call

it Dempster-Shafer rule because it has been widely promoted by Shafer in
DST.

3otherwise DS rule is mathematically not defined because of 0/0 indeter-
minacy.

2015 IEEE International Conference on Multisensor Fusion and
lntegration for Intelligent Systems (MFI)
Sept 14-16, 2015. San Diego, CA, USA

978-1-4799-7772-7/15/$31.00 ©2015 IEEE 160



A discussion on the validity of DS rule and its incompati-
bility with Bayes fusion rule for combining Bayesian BBAs
can be found in [6], [7], [8]. To circumvent the problems
of DS rule, Smarandache and Dezert (see [5], Vol. 2, Chap.
1), then Martin and Osswald (see [5], Vol. 2, Chap. 2) have
developed in DSmT [5] two fusion rules called PCR5 and
PCR6 based on the proportional conflict redistribution (PCR)
principle which consists

1) to apply the conjunctive rule;
2) calculate the total or partial conflicting masses;
3) then redistribute the (total or partial) conflicting mass

proportionally on non-empty sets according to the
integrity constraints one has for the frame Θ.

This PCR principle transfers the conflicting mass only
to the elements involved in the conflict and proportionally
to their individual masses, so that the specificity of the
information is not degraded. Because the proportional trans-
fer can be done in two different ways, this has yielded to
two different fusion rules. It has been proved in [9] that
only PCR6 rule is compatible with frequentest probability
estimation, and that is why we recommend its use in the
applications. PCR5 and PCR6 rules simplify greatly and
coincide for the combination of two sources. In this case,
the PCR6 combination is obtained by taking mPCR6(∅) = 0,
and for all X 6= ∅ in 2Θ by

mPCR6(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑
Y ∈2Θ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
], (4)

where all denominators in Eq. (4) are different from zero.
If a denominator is zero, that fraction is discarded. If a
denominator, e.g., m1(X) + m2(Y ) tends towards 0, then
also the conflicting mass m1(X)m2(Y ) that is transferable
tends to zero because m1(X) and m2(Y ) tend to zero (since
they are positive), therefore the redistribution masses also
tend to zero. That reflects the continuity of PCR6.

B. BBAs for Building change detection

1) Choice of the frame of discernment: Focusing on
building change detection, two change indicators, one from
images and one from DSMs are used. Changes from spectral
images are highlighted by using the Iteratively Reweighted
Multivariate Alteration Detection (IRMAD) [10]. Conse-
quently height changes from DSMs are shown after robust
height difference [1]. Three classes are considered to define
the frame of discernment satisfying Shafer’s model:

Θ = {θ1 , Pixel ∈ BuildingChange,

θ2 , Pixel ∈ OtherChange,

θ3 , Pixel ∈ NoChange},
(5)

and
θ1 ∩ θ2 ∩ θ3 = ∅. (6)

Based on the three classes, the set of focal elements FE
that are of interest in our application is:

FE = {θ1, θ2, θ3, θ1 ∪ θ2, θ2 ∪ θ3, θ1 ∪ θ2 ∪ θ3}. (7)

2) BBAs construction: Paper [2] constructed the sig-
moidal model for both concordance and discordance indexes.
The details and advantages of this approach are described
in [11]. The concordance index measures the concordace
of change indicator and BBA in the assertion, while the
discordance measures the opposition of change indicator to
the BBAs in the assertion. The original sigmoid curve is
defined as

f(τ,T )(x) = 0.99/(1 + e−
x−T
τ ), (8)

where x is the original value of each indicator. Two parame-
ters T and τ are used to control the symmetry point and the
slope of the sigmoid function. The symmetry point indicates
a certainty of 50%. In [11] these two parameters T and τ
are manually given. Here, the multi-level Otsu’s thresholding
method [12] is used for automatically getting the symmetry
points for both concordance index and discordance index.
Otsu’s algorithm defines that an image is composed of ob-
jects and background. A discriminant analysis is performed
by minimizing the intra-class variance. When three classes
are of interest, two threshold values are expected. Otsu’s
method can be extended to

σ2
ω(T1, T2) = ω1σ

2
1(T1, T2)

+ ω2σ
2
2(T1, T2) + ω3σ

2
3(T1, T2). (9)

The weights ωi are the probabilities obtained from the
image histogram that are separated by the thresholds T1

and T2. σi is the standard deviation of the i-th class, for
i = 1, 2, 3. T1 and T2 can be used as the symmetry points of
discordance and concordance index respectively. Thus, using
height change index as example, the BBAs for discordance
and concordance height change index are functions of values
a∆H and b∆H defined by

a∆H = fτ,T1(∆H), and b∆H = f−τ,T2(∆H). (10)

The factor τ is calculated with a sample value (∆H = 1,
a∆H = 0.1), which means 1 meter height change indi-
cates 10% probability to be building changes. The BBAs
for discordance and concordance image change index are
built similarly. Differences appearing in 2D images give a
concordance indication for all changes, which include the
building changes and other changes (θ1 ∪ θ2). In this paper
the changes from images are named ∆Img.

In the Tables I and II, we present the two ways of
construction of the BBAs from the sources of evidence based
either on DS or on PCR6 rules of combination for the height
change indicator (i.e. the first source of evidence) and the
image change indicator (i.e. the second source of evidence).
In Table I, m1(.) and m′1(.) represent the concordance and
discordance BBAs from ∆H , whereas in Table II m2(.) and
m′2(.) represent the concordance and discordance BBAs from
images.
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TABLE I
BBA CONSTRUCTION FOR HEIGHT CHANGE INDICATOR ∆H . [K∆H = a∆Hb∆H ]

Focal Elem. m1(.) m′1(.) mDS1 (.) mPCR6
1 (.)

θ1 a∆H 0 a∆H (1−b∆H )
1−K∆H

a∆H(1− b∆H) + a∆HK∆H
a∆H+b∆H

θ2 0 0 0 0
θ3 0 0 0 0

θ1 ∪ θ2 0 0 0 0
θ2 ∪ θ3 0 b∆H

(1−a∆H )b∆H
1−K∆H

(1− a∆H)b∆H + b∆HK∆H
a∆H+b∆H

θ1 ∪ θ2 ∪ θ3 1− a∆H 1− b∆H (1−a∆H )(1−b∆H )
1−K∆H

(1− a∆H)(1− b∆H)

TABLE II
BBA CONSTRUCTION FOR IMAGE CHANGE INDICATOR ∆Img. [K∆Img = a∆Imgb∆Img ]

Focal Elem. m2(.) m′2(.) mDS2 (.) mPCR6
2 (.)

θ1 0 0 0 0
θ2 0 0 0 0

θ3 0 b∆Img
(1−a∆Img)b∆Img

1−K∆Img
(1− a∆Img)b∆Img +

b∆ImgK∆Img

a∆Img+b∆Img

θ1 ∪ θ2 a∆Img 0
a∆Img(1−b∆Img)

1−K∆Img
a∆Img(1− b∆Img) +

a∆ImgK∆Img

a∆Img+b∆Img

θ2 ∪ θ3 0 0 0 0

θ1 ∪ θ2 ∪ θ3 1− a∆Img 1− b∆Img
(1−a∆Img)(1−b∆Img)

1−K∆Img
(1− a∆Img)(1− b∆Img)

III. RELIABILITY DISCOUNTING

The reliability discounting has been described and dis-
cussed in the references [13] and [14]. Briefly said, if an
additional knowledge about the reliability (α) of certain
indicator (X) is available, it can be adopted to refine the
initial BBAs. α would be a value ranging from 0 to 1.
And α = 1 means fully reliable, while α = 0 means the
indicator is totally unreliable. Based on Shafer’s discounting
model [3], the reliability discounting factor α is introduced
to discount any BBA m(.) defined on the power set 2Θ as
follows: {

mα(X) = α ·m(X), for X 6= Θ

mα(Θ) = α ·m(Θ) + (1− α).
(11)

In the DSM assisted building change detection, false alarms
are detected if wrong heights are present in DSM for large
regions [1]. And these wrong heights are mostly introduced
not in the stereoscope images matching procedure, but in
the gaps filling step. In our DSM generation procedure, the
height of un-matched pixels are interpolated using the height
values of neighborhood pixels. Therefore, a reliable height
value can be achieved for small gaps. When large gaps turn
up in the disparity map, for example, a whole building roof,
the height of that building can not be correctly interpolated.
Thus, the percentage of available correctly matched neigh-
borhood pixels inside a predefined region can be used to
generate the height reliability. Fig. 1 shows an example of the
generated reliability map. Fig. 1a is the gaps mask. The gaps
region of the disparity map is represented with black color.
Pixels with proper elevation values are displayed with white
color. It can be observed, based on our approach that pixels
in the center of a gap get lower reliability factor values than
pixels next to the gap boundary (see Fig.1b). In the building

Fig. 1. Reliability map (b) generated from the gaps mask (a).

change detection procedure, the reliability map of two DSMs
(αDSM1 and αDSM2 ) are calculated respectively. They are
then fused together to generate a final reliability map α∆H

for the height change indicator.

α∆H = αDSM1 · αDSM2. (12)

IV. GLOBAL BBAS AND CHANGE DETECTION

A. Global BBAs generation

The BBAs related with the concordance and discordance
indexes are combined to get the global BBA regarding to
each source of evidence. These global BBAs will then be
used as input for solving the change detection problem
thanks to their combination. From the previous step of BBAs
modelings, each pixel will get two sets of BBAs to combine
results from Table I and II. More precisely, we will have to
combine either {mDS

1 (.),mDS
2 (.)} if DS rule is preferred for

the BBA modeling, or {mPCR6
1 (.),mPCR6

2 (.)} if the PCR6
rule is adopted. These BBAs from Table I and II have been
represented by a1, b1, c1 and a2, b2, c2. In this paper, the mass
values a1, b1, and c1 are further discounted by the generated
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reliability map α∆H and denoted respectively as A1, B1, and
C1. More precisely, one computes

A1 = α∆H · a1

B1 = α∆H · b1
C1 = α∆H · c1 + (1− α∆H).

(13)

In this application, only the reliability map for height
change indicators is generated. The reliability map for image
change indicators can also be constructed according to the
change objects of interested. For instance, vegetation mask
can be used to discount the reliability of building changes.
However, this paper focuses on the reliability of height
information. When the reliability map of image changes is
available, it could be used as the same way as height change
reliability map. Table III and Table IV describe the final
building change detection models based either on DS or on
PCR6 rules. Here, the discounted height change indicators
is denoted as m1α∆H

(.).

TABLE III
DS FUSION MODEL FOR BUILDING CHANGE DETECTION.

Focal Elem. m1α∆H (.) m2(.) mDS12 (.)
θ1 A1 0 A1(b1+b3)

1−A1b2

θ2 0 0 A2b1
1−A1b2

θ3 0 b2
(A2+a3)b2

1−A1b2

θ1 ∪ θ2 0 b1
A3b1

1−A1b2

θ2 ∪ θ3 A2 0 A2b3
1−A1b2

Θ A3 b3
A3b3

1−A1b2

TABLE IV
PCR6 FUSION MODEL FOR BUILDING CHANGE DETECTION.

Focal Elem. m1α∆H (.) m2(.) mPCR6
12 (.)

θ1 A1 0 A1(b1 + b3) + A1A1b2
A1+b2

θ2 0 0 A2b1
θ3 0 b2 (A2 + a3)b2 + b2A1b2

A1+b2
θ1 ∪ θ2 0 b1 A3b1
θ2 ∪ θ3 A2 0 A2b3

Θ A3 b3 A3b3

m1α∆H
(.) can be obtained from the discounting of the

fusion results presented in Table I. Thus they have been
denoted respectively as mDS

1α∆H
(.) and mPCR6

1α∆H
(.). This dis-

counted height change indicators are fused in the second
step with image change indicator m2(.) to generate the final
global BBAs. From the tables III and IV, four sets of global
BBAs can be computed based on different BBAs and fusion
methods as follows:

G1 = DS{mDS
1α∆H

(.),mDS
2 (.)}

G2 = PCR6{mDS
1α∆H

(.),mDS
2 (.)}

G3 = DS{mPCR6
1α∆H

(.),mPCR6
2 (.)}

G4 = PCR6{mPCR6
1α∆H

(.),mPCR6
2 (.)}.

(14)

For example, if both the BBA modeling procedure and
global BBAs are constructed based on DS fusion rule, the
generated global BBA is recorded as G1.

B. Change mask generation

After the fusion step, each pixel in the images will
get a certain degree of belief for all focal elements. The
value of global BBAs in θ1 gives a direct building change
probability map. A change mask can be generated after
giving a threshold value. However, BBAs on the partial
ignorance and full ignorance set should also be considered
in the decision making procedure. DST and DSmT propose
different approaches to take the final decision. In this work,
the same decision criteria as used in [2] are tested. They are:
1) maximum of global BBAs (Max Bel), 2) maximum of
plausibility (Max Pl), 3) maximum of betting probabilities
(Max BetP) and 4) the maximum of DSmP (Max DSmP).
The reader can refer to [3] and [5] (Vol. 3, Chap. 3) for
the mathematical definitions of Bel(.), Pl(.), BetP (.) and
DSmP (.) functions.

V. EXPERIMENTS

The improved building change detection fusion models
have been tested on satellite images. The datasets and the
experiments are described in this section.

A. Datasets

The experimental datasets consist of two pairs of IKONOS
stereo imagery captured in February 2006 and May 2011
respectively shown in Fig. 2 and 3. The first two images in
each figure are the panchromatic images of two dates. (c)
and (d) are the generated DSMs. They have been generated
based on the method explained in [15]. The colors represent
the height range in this test region.

Fig. 2. Experimental dataset: a) panchromatic image from date1; b)
panchromatic image from date2; c) DSM from date1; (d) DSM from date2.

The spatial co-registration is achieved though camera
model parameter corrections before the DSM generation
procedure [15]. The radiometrical co-registration method has
been described in [1]. Fig. 2 shows a normal building change
example. Several buildings have been built on flat surface.
The generated DSMs are displayed in Fig. 2c and d. In the
second example (shown in Fig. 3), a large percentage of
pixels on the roof of the large building in the center appear
as gaps in the disparity map. In the filling procedure, the
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Fig. 3. Datasets of the 2nd test region; a) panchromatic image from date1;
b) panchromatic image from date2; c) DSM from date1; (d) DSM from
date2.

large size of the gap in the date1 data lead to the missing of
this building in the DSM (Fig. 3c).

B. Results and evaluation

The refined DS fusion model and PCR6 fusion model
have been applied to both datasets respectively. To show the
improvement obtained by our method, we have compared
its results with the original results we can obtain with the
method in [2]. Firstly, the global BBAs of θ1 are compared
and displayed in Fig. 4 below.

Fig. 4. Global Building change BBAs (a) Initial result; (b) Refined result;
(c) Ground truth.

Fig. 4(a) corresponds to the original4 result, and Fig. 4(b)
shows the refined result based on G1(θ1). By comparing to
the ground truth (Fig. 4(c)), the improvements can be clearly
observed in the building boundary regions, especially the
building marked with a white circle. In the initial result,
the pixels next to this building are falsely detected as
BuildingChange.

To evaluate quantitatively the performances of the different
fusion approaches, the extracted BBAs from both approaches
(original and refined) are compared to the manually extracted
change reference masks. The results are analyzed in terms of
Receiver Operating Characteristic (ROC) curve [16]. A larger
area under the ROC curve (AUC) indicates a better accuracy
of the building change map. The numerical evaluation results
are described in Table V. The obtained AUC values prove a
general improvement after reliability discounting is applied.

TABLE V
QUALITY COMPARISON OF GLOBAL BBA (BUILDING CHANGE).

Test Region 1 Test Region 2
Original Refined Original Refined

G1 0.9811 0.9833 0.9509 0.9950
G2 0.9829 0.9839 0.9485 0.9931
G3 0.9815 0.9837 0.9512 0.9955
G4 0.9835 0.9844 0.9487 0.9939

In addition to the AUC comparison, the building change
masks extracted from these four global BBAs sets are
compared and evaluated. Each global BBA set can generate
four building change masks based on these four decision
criteria. These building change masks are compared with the
masks from paper [2] based on Kappa statistic (KA). The
comparison results of Test region 1 are shown in Table VI.
Limited by the reference data we can get, only the building
change frame is evaluated here. One sees the reliability
discounting map helps to improve the result accuracy in all
fusion and decision approaches.

In the second test region, there is actually no building
changes. The purpose of showing this test region is to further
prove the advantage of the extracted reliability map. Fig. 5
shows the extracted reliability discounting map of the height
changes. The windowsize we selected for this test region
is 9× 9. By using this reliability map, final fusion result of
G1(θ1) is achieved and shown in Fig. 6(a). As a comparison,
the G1(θ1) of the initial fusion model is displayed in Fig.
6(b). This is the same building that we have discussed in
paper [1]. It can be noted in Fig. 3, this building exists in
both panchromatic images of two dates. However, only the
DSM from date1 contains the correct height of this building.
In Fig. 3c, this building can not be recognized. Therefore,
a very high BBA would be achieved in the height change
indicator. A high value in m1(.) leads to a high global
BBAs in building changes (as shown in Fig. 6(a)). Thus
this building would be falsely detected as building changes.
However, after discounting this region has much lower global
BBAs (see Fig. 6(b)), and can be further correctly detected
as NoChange.

4obtained without reliability discounting, as presented in [2].
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TABLE VI
CHANGE MASKS EVALUATION FROM FOUR GLOBAL BBAS.

G1 G2 G3 G4

Original Refined Original Refined Original Refined Original Refined
Max Bel 0.9271 0.9324 0.9271 0.9324 0.9266 0.9322 0.9265 0.9321
Max Pl 0.9291 0.9342 0.9288 0.9339 0.9287 0.9339 0.9284 0.9336

Max BetP 0.9283 0.9335 0.9282 0.9334 0.9279 0.9333 0.9278 0.9333
Max DSmP 0.9281 0.9333 0.9280 0.9331 0.9278 0.9331 0.9276 0.9330

Fig. 5. Generated height change reliability map of the test region 2.

Fig. 6. Global Building change BBAs (a) Initial result; (b) Refined result.

VI. CONCLUSIONS

Building change detection is a difficult topic, especially
when the building changes happen together with other ir-
relevant changes. Our previous research has evidenced the
performance of the belief functions in DSM assisted change
detection [2]. In this paper, the change detection accuracy is
further improved by adopting an additional reliability map.
Height has proved to be an important feature for building
change detection. However, the DSMs from satellite images
do not always provide reliable height information, due to
the occlusion and matching errors. The wrong height infor-
mation will thus bring false alarms to the change detection
procedure. Therefore, the original unfilled disparity maps are
adopted to generate an height change reliability map, which
is further used in the fusion models.

Our first experimental results have shown that this relia-
bility map can improve the quality of all four global BBAs,
and further influences the final change detection results from
four decision criteria. However, the two test regions were
quite small to draw a definitive conclusion that is why more
experiments will be performed on a wider variety of regions
with different types of backgrounds. A detailed statistical
analysis and comparisons of the results with other techniques

is under progress and they will be presented in a forthcoming
publication.

Generally speaking, both DST and DSmT frameworks
offer the possibility to reach a high accuracy result. The
workflow proposed in this paper enables an automatic build-
ing change detection procedure. Other reliability maps from
images would be further adopted in future work. Further-
more, besides building changes, more change objects will
be considered in the fusion model.
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