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Abstract  

In this paper, we propose a fast parallel algorithm for data classification, and its application for 
Magnetic Resonance Images (MRI) segmentation. The presented classification method is based on 
a parallel fine grained fuzzy C-means algorithm. It is implemented on a polymorphic SIMD 
machine to sort out the different components of a brain image. The use of the massively parallel 
architecture in the classification domain and particularly for the fuzzy classification is introduced 
to improve the complexities of the corresponding algorithms. The proposed algorithm is assigned 
to be implemented on a massively parallel machine, which is the Reconfigurable Mesh Computer 
(RMC). The brain image of size (m x n) to be processed must be stored on the RMC of the same 
size, one pixel per Processing Element (PE). Some interesting results are obtained in terms of 
accuracy and efficiency analysis of the proposed method, thanks to the reconfiguration ability of 
the used computational model. 

Keywords: Parallel Programming, Image Segmentation, Brain MRI image, Parallel Classification, 
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1. Introduction 

Magnetic Resonance (MR) imaging has been widely used in brain exploration, due to its excellent 
soft tissue contrast, non-invasive behavior, high spatial resolution and easy slice selection at any 
orientation. However, accurate and fast tools for cerebral MR images processing are of great 
interest for many brain manipulations such as analysis, interpretation, diagnostics, and 
examination of the progression of brain disorders such as Alzheimer’s disease, multiple sclerosis 
or schizophrenia, and neurosurgical operation planning [1].  

MRI segmentation can be considered as an Image processing problem or a pattern recognition one. 
In both cases, the problem is to classify a set of elements into a set of classes according to the 
shared characteristics inside the clusters. In the MRI segmentation domain, the vector pattern X 
that will be considered in the FCM algorithm corresponds to the gray level of the studied pixel in 
each MRI slice.  

In the medical imaging field clustering is usually used for pattern recognition (Brain retrieval, 
Tumor segmentation etc…). The corresponding clustering algorithms require often a huge volume 
of data computation. To achieve clustering result rapidly, several computational models have been 
proposed as the high performance tools to improve performance and efficiency of the proposed 
method. 

Actually, the massively parallel architectures are known as the high performance computational 
models. They have demonstrated their effectiveness in terms of supporting the most complex 
parallel algorithms such as Fuzzy C-Mean algorithms [1]. 

In [2], the authors have discussed the need of parallel methods to speed up clustering algorithms. 
They have implemented their parallel FCM on a parallel architecture named “Red hat based 
cluster”. This parallel system, possesses eight nodes supervised by a blade node using c 
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programming language an message passing instruction (MPI) model to implement the parallel 
proposed algorithm. They have notified an interesting speed up result when the number of nodes 
increases. 

In [3], authors have proposed a parallel Fuzzy C-Mean clustering for large data set (PFCM). This 
later is assigned o be implemented on a parallel computer of Single Program Multiple Data 
(SPMD) model using MPI tool. They compare the obtained scalability and parallel capability to an 
existing parallel C-Mean algorithm.  

Due to the huge amount of data to be processed in the classification domain, several parallel 
implementations have appeared, both in distributed and shared memory hardware as well as in grid 
environment [4]. All the proposed algorithms have been investigated as : Decision tree induction 
[5] , Fuzzy rule based classifiers [6] [7] , neural networks [8] [9] , association rules mining [10] 
[11] and clustering [2] [12]. 

Since the number of proposed computational models and methods is large, we notify that several 
associated algorithms have been proposed such as: c-means [14], fuzzy cmeans (FCM) [15], 
adaptive c-means [16], modified fuzzy cmeans [17] using illumination patterns and fuzzy c-means 
combined with neutrosophic set [18]. 

Image segmentation is a splitting process of images into a set of regions, classes or homogeneous 
sub-sets according to some criteria. Usually, Gray levels, texture or shapes constitute the well used 
segmenting criteria. Frequently the criterion choice is based on the kind of images and the  target 
goals after processing. Image segmentation can be considered as an Image processing problem or a 
pattern recognition one. In the case of Image processing, we distinguish two essential approaches 
that are: region approach and contour approach. In the first approach, one looks for homogeneous 
regions using some basic techniques such as thresholding, region growing, morphological 
mathematics and others [19]. Thresholding technique discriminates pixels using their gray levels. 
It supposes implicitly that intensity structures are sufficiently discriminative, and guarantee good 
separation [20]. In [21] authors, propose a multi-modal histogram thresholding method for gray- 
level images.  As mentioned above, segmentation represents a very large problem in the image 
processing domain; it requires several algorithmic techniques and different computational models, 
which can be sequential or parallel using processing elements, cellular automata, neural networks 
or other advanced tools. 

In this paper, we propose a massively parallel algorithm for fuzzy classification (fuzzy c-means) 
and its application to the MRI cerebral images. The proposed algorithm is assigned to be 
implemented on a SIMD structure which is an (n x n) massively parallel Reconfigurable Mesh 
Computer (RMC). It is a fine grained version instead of the most proposed algorithms in the 
literature. These later are based on the “Message Passing Interface” (MPI) tool in the coarse 
grained parallel structure having a reduced number of nodes (e.g. at most 16 nodes). Our fine 
grained parallel algorithm requires computational model of the same size (n x n) as the image, 
where each pixel (i, j) is associated to it corresponding processing element PE(i, j). In this context, 
the proposed PFCM algorithm is assigned to an upper bound theoretic machine to see at first how 
to reach the real time of the fuzzy clustering algorithm and secondly how to implement this 
algorithm in a real machine in order to discuss the dynamic evolution of the class centers 
according to the data input image and to appreciate its usefulness in the medical imaging domain.      

To validate the proposed method, we use an emulation platform of the RMC architecture [23], [24] 
where the developed parallel program is performed. Note that with this platform we can create 
several massively parallel virtual machines of any topology by associating the performances of all 
the available hardware resources (Desktop, GPU, Supercomputer, Cellular automata etc.). The 
polymorphic aspect of this platform allows researchers to build their own virtual parallel 
architectures for their specific problems even if theses architectures are not available. By this 
concept, we show the power and the high performance of our vision for the future to not restrict 
researchers only to the available technologies. 



Vol 22, No. 1;Jan 2015

4 office@multidisciplinarywulfenia.org

 

This paper is organized as follows: Section 2 presents a summary the computational model used to 
implement our parallel algorithm. The parallel segmentation fuzzy c-means algorithm and its 
implementation program code are described in more details in section 3, and the obtained 
segmentation results are presented in section 4. The complexity analysis of the parallel fuzzy c-
means program and its improvement are discussed in the next section 5. Finally, the last section 
gives some concluding remarks on this work. 

  

2. Parallel Computational Model 

2.1. Presentation 

The computational model that will support the proposed Parallel FCM is the Reconfigurable Mesh 
Computer (RMC) of same size n x n as the input MRI image. It is a massively parallel machine 
having n2 Processing elements (PEs) arranged on a 2-D matrix as shown in figure 1. It is a Single 
Instruction Multiple Data (SIMD) structure, in which each PE(i, j) is localized in row i and column 
j and has an identifier defined by ID= n x i + j. Each PE of the mesh is connected to its four 
neighbors (if they exist) by communication channels. It has a finite number of registers of size 
(log2 n) bits. The PEs can carry out arithmetic and logical operations. They can also carry out 
reconfiguration operations to exchange data over the mesh. Also the PEs can use another way to 
exchange data using a shared memory. All the PEs are managed by a host manager that is designed 
to load parallel program and global data to distribute them over the matrix of PEs for any 
execution stage of the algorithm.   

 
 

Figure 1. A Reconfigurable Mesh Computer of size 3 x 3. 

 

2.1.1. Processing Element (PE) Model. 

Like any processor, each processing element (PE) of the RMC can execute a set of instructions 
relating to the arithmetic and logical operations. The concerned operands can be the local data of a 
PE or the data arising on its communication channels after data exchange operation between the 
PEs. Figure 2 shows a simplified model of the processing element used in the considered 
bidirectional RMC (2D RMC).  

The PE can also carry out the bridge configurations in order to establish connections between two 
or more communication channels. When the PE of the RMC is in a Simple Bridge (SB) state, it 
establishes connections between two of its communication channels. This PE can connect itself to 
each bit of its channels, either in transmitting mode, or in receiving mode, as it can be isolated 
from some of its bits (i.e. neither transmitter, nor receiver). Various SB configurations 
are described by the following formats:  

 PE00  PE01  PE02 

 PE10 
 

 PE11 
 

 PE12 
 

 PE20 
 

 PE21 
  PE22 

 

Shared Memory 

 
 
 
 

Host 
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{E, W, S-N },{E-S, W, N }, {N-W, S, E }, {Ε−Ν, S, W } and {W-S, E, N } where E, W, N and S 
indicate the East, West, North and South Ports of a given PE respectively. 

For example, the format: {W-S, E, N }  is a simple bridge configuration where the west and south 
ports are linked by communication channel. The East and north ports remain free. 

A PE is in a Double Bridge (DB) state when it carries out a configuration to create two 
independent buses. Thus, the possible configurations of the DB state are: {EW, NS}, {ES, NW} 
and {ΕΝ, SW}. 

A PE is in CB State when it connects all its active communication channels in only one; each bit 
with its correspondent. This operation is generally used when we want to transmit information 
over the mesh to a set of PEs at the same time.  The CB state is defined by the configuration:    
{NESW} 
 

 

Figure 2. Different components of a processing element model of the 2D RMC model. 

 

Notice that in the proposed PE model, the list of internal elements is not exhaustive. During the 
programming phase, we will try to deploy a minimal number of components resources (registers, 
flags, ports, etc.) to optimize the used RMC and to accomplish efficiently the FCM algorithm 
execution. 

 

3. Parallel Fuzzy Segmentation Algorithm  

3.1. Standard fuzzy c-means algorithm  

The fuzzy c-means (FCM) clustering algorithm was first introduced by [22] and later was 
extended by [15]. Fuzzy C-means (FCM) is a clustering technique that employs fuzzy partitioning 
such that a data point can belong to all classes with different membership grades between 0 and 1. 

The aim of FCM is to find the final values of the C cluster centers (centroids) in the data set 
X={x1, x2, ..., xN}  that minimize the following dissimilarity function:  
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Where:  

uij: Membership of data xj in the cluster Vi; 

Vi : Centroid of cluster i; 

d(Vi,xj) : Euclidian distance between ith centroid (Vi) and jth data point xj; 

m є [1,∞] : fuzzy weighting exponent (generally equals 2).  

N: Number of data. 

C: Number of clusters 2 ≤ C < N. 

To reach a minimum of dissimilarity function there are two conditions.  
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In order to implement the FCM algorithm even on serial or parallel computational model, it is 
necessary to build it around the following stages: 

 

Stage 1: - Randomly initialize the membership matrix (U) according to the constraints of 
Equations  2a, 2b  and 2c. 

- initialize the fuzzification parameter m ( ∞<< m1 ),  

- Choose the number of clusters C,  

- Initialize the initial values of cluster centers )0(
iV  (i=1 to c) and threshold Sth>0. 

 

For each iteration k: 

Stage 2: Calculate centroids )(k
iV  using Equation (3). 

Stage 3: Compute the objective function J by equation (1). 
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Stage 4: compare the obtained objective function Jk to Jk-1 and exit the loop (i.e. go to stage 6) if 
the absolute value of the difference between the successive objectives functions is lower 
than Sth. 

Stage 5: Compute a new membership matrix U using Equation (4) and Go to Stage 2. 

Stage 6: Stop. 

 

3.2. Parallel fuzzy c-means algorithm 

The parallel algorithm, described in this section, is implemented in an RMC emulating framework 
[23] [24] using its XML based parallel programming language. The program code presented, in 
each stage of this parallel algorithm, is performed on the MRI cerebral image as input data. Before 
its execution, we define in the initialization phase the number of classes by c = 3. This means that 
the classes looked for in the image are the white matter, the gray matter and the cerebrospinal 
fluid. The background of the image is not considered by the algorithm. 

 

3.2.1. Initialization procedure 

– Loading data image input and initialization phase: Each PE(i,j) of the mesh will upload in 
its register 0 a pixel gray level of the image. 

<loadImage file="brain.jpg"  reg="0"  codage="8" /> 

– Loading  initial parameters in the host registers : 

  <host>  

    <loadValues regs="0,1,2,3,4,5"  value="140,149,150,0,0,0.1" /> 

    <!-- this instruction means that :  

reg[0]contains the initial value of C 1 class center  

    reg[1]contains the initial value of C 2 class center  

     reg[2]contains the initial value of C 3 class center  

     reg[3]contains the initial value of J n-1  

     reg[4]contains the initial value of J n-1  

     reg[5]contains the initial value of S th 

-->  

  </host> 

 

3.2.2. Class determination procedure 

This procedure consists of six essential stages which are: 

1- Data Broadcasting 

2- Distance computation  

3- Local objective function computation and new class center determination 

4- Class centers and global objective function computation. 

5- Loop stop test 

6- Membership decision. 

These various stages are included in a loop as follows:   
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<Beginning of iteration (k) > 

 

3.2.2.1. Data broadcasting     

For (c = 1 to C) 

{ 

� All the PEs of the RMC configure themselves in Crossed Bridge (CB) state. 

� The representative PE of the class Vc   broadcasts its value Vc,k through  the 
mesh. 

� All the PEs of the RMC store in their Rxm the value Vm,n received through the 
mesh. 

� All the PEs of the RMC stores the fuzzyfication parameter m . 

    } 

 

It should be noted that the representative PE of a class is the PE having the smallest identifier ID 
in its class. The search for this smallest identifier calls a procedure of the Min-search in a group of 
PEs as in [13]. 

The corresponding parallel code of  the  data broadcasting procedure is : 

 

<doWhile test="reg[30]>reg[5]"  target="host" > 

  <!-- All PES except PEs representing background c olor  -->  

    <for-eachPE test="reg[0]!=0" > 

       <mark type="true" /> 

  <!-- All the PE’s load the three class centers fr om the host -->          

<loadValue regs="8,9,10"  value="host.reg[0], host.reg[1], 
host.reg[2]" /> 

  <!-- Loading the fuzzyfication parameter into reg [40] -->          

     <loadValue reg="40"  value="2" /> 

 

3.2.2.2. Distance computation 

At each iteration k, each PE computes the distances d(Ng, Vm,k) between its gray level Ng and the 
values of the C class centers. These values are stored in its C registers (V1,k , V2,k ,… ,  VC,k ).  

 

<!—-  Each PE computes the three distances separati ng it from the 
three class centers. d1, d2 and d3 are stored in re g[11], reg[12] 
and reg[13] respectively 

-->    

     <doOperation expression="reg[11]=Math.abs(reg[0]-reg[8])" /> 

     <doOperation expression="reg[12]=Math.abs(reg[0]-reg[9])" />  

     <doOperation expression="reg[13]=Math.abs(reg[0]-reg[10])" /> 
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3.2.2.3. Local objective function computation: 

a) Computing membership of data Xj to the cluster Vi 

 

<!— 

Each PE computes its membership degrees U1, U2 and U3 to the clus-
ters centred at C1, C2 and C3. The values of C1,C2 and C3 are re-
spectively stored in the registers reg[41], reg[42]  and reg[43].       

-->     

<if test="(reg[11]!=0)and(reg[12]!=0)and(reg[13]!=0)" > 

<!—-  compute U1 -->    

<doOperation expression= "reg[41]= 
1/(Math.pow(reg[11]/reg[11],2/(reg[40]-1)) 
+Math.pow(reg[11]/reg[12],2/(reg[40]-1)) 
+Math.pow(reg[11]/reg[13],2/(reg[40]-1)))" /> 

<!—-  compute U2 -->    

<doOperation expression= "reg[42]= 
1/(Math.pow(reg[12]/reg[11],2/(reg[40]-1)) 
+Math.pow(reg[12]/reg[12],2/(reg[40]-1)) 
+Math.pow(reg[12]/reg[13],2/(reg[40]-1)))" /> 

<!—-  compute U3 -->    

<doOperation expression= "reg[43]= 
1/(Math.pow(reg[13]/reg[11],2/(reg[40]-
1))+Math.pow(reg[13]/reg[12],2/(reg[40]-
1))+Math.pow(reg[13]/reg[13],2/(reg[40]-1)))" /> 

     </if> 

<!-- If d1==0, U1=1, U2=0 et U3=0 -->      

     <if test="reg[11]==0" > 

       <loadValue reg="41,42,43"  value="1,0,0" ></loadValue> 

     </if> 

  <!-- if d2==0, U1=1, U2=0 et U3=0 -->     

 

       <if test="reg[12]==0" > 

<loadValue reg="41,42,43"  value="0,1,0" ></loadValue>      

</if> 

<!-- if d3==0, U1=1, U2=0 et U3=0 -->    

      <if test="reg[13]==0" > 

        <loadValue reg="41,42,43"  value="0,0,1" ></loadValue> 

      </if> 

b)  Local objective function computation and centroid determination 

 For (c = 1 to C) 

{ 
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• Each PE computes terms : T1(c)=U(c) ^m , T2(c)=U(c) ^m * data, 
T3(c)= U(c) ^m * Distance(c)²  

• Each PE computes its local objective function (J) 

• All PEs participate in the parallel hierarchical summation to compute global 
objective function J. This summation procedure was detailed in [27], it has a 
complexity of  O(Log2(n)) iterations. The Host PE will retrieve and retain the 
result of the summation (J).  

}  

<!-- computing reg[47]= U1 ^m  -->    

   <doOperation expression="reg[47]=Math.pow(reg[41],reg[40])" /> 

<!-- computing reg[48]= U2 ^m  -->      

<doOperation expression="reg[48]=Math.pow(reg[42],reg[40])" /> 

<!-- computing reg[49]= U3 ^m  -->      

   <doOperation expression="reg[49]=Math.pow(reg[43],reg[40])" /> 

 

<!-- computing reg[44]=U1 ^m * data  -->      

   <doOperation expression="reg[44]=reg[47]*reg[0]" /> 

<!-- computing reg[45]=U2 ^m * data  -->      

   <doOperation expression="reg[45]=reg[48]*reg[0]" /> 

<!-- computing reg[46]=U3 ^m * data  --> 

     

   <doOperation expression="reg[46]=reg[49]*reg[0]" />   

<!-- computing reg[50]=U1 ^m * d1²  -->      

   <doOperation expression="reg[50]=reg[47]*reg[11]*reg[11]" /> 

<!-- computing reg[51]=U2 ^m * d2²  -->      

   <doOperation expression="reg[51]=reg[48]*reg[12]*reg[12]" /> 

<!-- computing reg[52]=U3 ^m * d3²  -->      

   <doOperation expression="reg[52]=reg[49]*reg[13]*reg[13]" /> 

<!-- 

All the marked PEs will participate to the hierarch ical sum. The 
result of this sum is stored in the host.  

Hregs[41] contains the cardinality of C 1 class. 

Hregs[42] contains the cardinality of C 2 class. 

Hregs[43] contains the cardinality of C 3 class. 

 

Hregs[44] contains the sum of each PE term : (U1 ^m * data). 

Hregs[45] contains the sum of each PE term : (U2 ^m * data). 

Hregs[46] contains the sum of each PE term : (U3 ^m * data). 

 

Hregs[47] contains the sum of each PE term : (U1 ^m). 

Hregs[48] contains the sum of each PE term : (U2 ^m). 
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Hregs[49] contains the sum of each PE term : (U3 ^m). 

 

Hregs[50] contains the sum of each PE term : (U1 ^m * d1²). 

Hregs[51] contains the sum of each PE term : (U2 ^m * d2²). 

Hregs[52] contains the sum of each PE term : (U3 ^m * d3²). 

-->    

   <doHSum PEregs="41,42,43,44,45,46,47,48,49,50,51,52"   
Hregs="41,42,43,44,45,46,47,48,49,50,51,52" /> 

</for-eachPE> 

 

3.2.2.4.  Class center computation  and global  objective function 

<!-- 

  The host computes the global cost function J, the  three new 
class centers and sets up the iteration counter. 

reg[0] contains the new value of C1 class. 

reg[1]the new value of C2 class. 

reg[2]the new value of C3 class. 

 

reg[3]contains the value of J n-1  

reg[4]contains the value of Jn 

-->    

<host> 

<!-- reg[i] contains the new value of Ci class = 
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-->    

<doOperation expression="reg[0]=reg[44]/reg[47]" /> 

      <doOperation expression="reg[1]=reg[45]/reg[48]" /> 

      <doOperation expression="reg[2]=reg[46]/reg[49]" /> 

 

<!-- storing in reg[3] the last value of objective function J n-1 -->  

      <doOperation expression="reg[3]=reg[4]" /> 

<!-- computing the new value of objective function Jn -->  

      <doOperation expression="reg[4]=reg[50]+reg[51]+reg[52]" /> 

<!-- storing the new value of threshold reg[30]=J n-J n-1   -->  

      <doOperation expression="reg[30]=Math.abs(reg[4]-reg[3])" /> 

<!-- incrementing the counter  -->  

      <doOperation expression="reg[31]=reg[31]+1" /> 

     </host>    

 </doWhile> 
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3.2.2.5.  Loop stopping test 

The host  calculates the absolute value  1n −− nJJ  and compares it with an arbitrary threshold 
Sth.  

• If 1n −− nJJ < Sth then go to the end of procedure.  

• Else,   return back to the procedure of new class centers computation. 

 

<doWhile test="reg[30]>reg[5]"  target="host" > 

 

3.2.2.6. Membership decision 

<!-- 

  Labelling the different image components: assigni ng to each PE 
the index of the class to which it belongs. 

The registers reg[1],reg[2] and reg[3] of the mesh contains the 
images of the first, the second and the third class es 
respectively.   

-->        

<for-eachPE test="reg[0]!=0" > 

  <!--if(minimum(d1,d2,d3)==d1) reg[1]= C1 class -->  

  <if test="min(reg[8], reg[9], reg[10])==reg[8]" > 

   <loadValue reg="1"  value="host.reg[0]" /> 

  </if> 

  <!--if(minimum(d1,d2,d3)==d2) reg[1]= C2 class -->  

  <if test="min(reg[8], reg[9], reg[10])==reg[9]" > 

   <loadValue reg="2"  value="host.reg[1]" /> 

  </if> 

 <!--if(minimum(d1,d2,d3)==d3) reg[1]= C2 class -->  

  <if test="min(reg[8], reg[9], reg[10])==reg[10]" > 

   <loadValue reg="3"  value="host.reg[2]" /> 

  </if> 

  </for-eachPE>  

<!-- 

  End of the program 

--> 

</prog> 

 

4. Materials And Results 

4.1. Materials: 

After presenting the proposed PFCM and its corresponding program code, we have to evaluate the 
memory space required by the used variables and parameters. As we have seen in section 3), our 
program requires some physical components inside each PE of the RMC  matrix and others inside 
the host PE. 
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The host PE uses some registers where it stores the required data about the input image and the 
instruction program that it sends to the PEs matrix in a SIMD manner. Also, each PE uses its own 
registers to carry out the operations coming from the host. In the same way, these operations need 
the internal registers inside each PE according to the image input and to the temporary local 
variables to execute all the instructions of the PFCM. Thus the total memory size required for each 
matrix PE equals 78 bytes, while, for the host PE, this total memory size required equals 63 bytes. 
The size and the contents of this required memory is detailed in the following table. 

 

Table 1 

Required registers of the RMC during the PFCM program execution 

 

Register name Content Target PE Memory  

size 
(byte) 

reg[0], reg[1] and reg[2] Values of C1, C2 and C3 class center Host PE 3 

reg[3], reg[4] and reg[5] Values of Jn-1 , Jn and Sth Host PE 12 

reg[0] Gray level of the pixel Matrix PE 1 

reg[40] Fuzzyfication parameter m Matrix PE 1 

reg[30] Absolute value of (Jn-Jn-1)  Matrix PE 4 

reg[8], reg[9] and reg[10] Values of the 3 class centers Matrix PE 12 

reg[11], reg[12] and reg[13] Distances d1, d2, d3 from the PE to the 
3 class centers 

Matrix PE 12 

reg[41], reg[42] and reg[43] Membership degrees U1,U2 and U3 Matrix PE 12 

reg[44], reg[45] and reg[46] Data*U1m, Data*U2m, Data*U3m Matrix PE 12 

reg[47], reg[48] and  
reg[49] 

U1m, U2m, U3m Matrix PE 12 

reg[50], reg[51] and reg[52] d12*U1m, d22*U2m, d32*U3m Matrix PE 12 

reg[41], reg[42], reg[43] sum(U1),sum(U2) and sum(U3) Host PE 12 

reg[44], reg[45], reg[46] sum(Data*U1m),sum(Data*U2m) and 
sum(Data*U3m) 

Host PE 12 

reg[47], reg[48], reg[49] sum(U1m),sum(U2m) and sum(U3m) Host PE 12 

reg[50], reg[51], reg[52] sum(d12*U1m),sum(d22*U2m) and 
sum(d32*U3m) 

Host PE 12 

 

4.2. Program results: 

The input MRI image is the one of figure 3a); this image will be segmented to sort out its three 
components. The execution of the presented parallel program leads to the following results: The 
image of figure 3a) corresponds to a human brain slice, it is the original input image of the 
program. Figures 3b), 3c) and 3d) represent the three matters of the brain. They are named 
respectively the grey matter, cerebrospinal fluid and white matter.   
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a) original image b) grey matter 

  

c) cerebrospinal fluid d) white matter 

 

Figure 3.  PFCM segmentation of an MRI brain image 

In order to evaluate the effectiveness features of the proposed program, we focused the study on 
the dynamic convergence analysis of the method. To do so, we present four cases of study. For 
each case we use the same input MRI image, but the initial class centers are changed.  The 
obtained results are presented as follows: 

In the first case, the initial class centers are arbitrarily chosen as:  (c1, c2, c3) = (1, 30, 255). The 
algorithm converges to the final class centers (c1, c2, c3) = (27.96, 102.39, 147.53) after 14 
iterations, as in table 2. 

 

Table 2. Different states of the parallel fuzzy classification algorithm starting from class centers 
(c1, c2, c3) = (1, 30, 255). 

 

Iteration 
Value of each  class center  Absolute value 

of the Error 

1n J −− nJ  c1 c2 c3 

1 1,00 30,00 255,00 69909116,17 

2 75,11 96,74 146,36 65182804,53 

3 53,90 99,71 146,63 1572217,07 

4 39,55 102,08 147,02 666804,12 

5 32,87 102,74 147,41 134784,03 

6 30,04 102,78 147,57 22837,15 

7 28,87 102,68 147,60 3962,85 
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8 28,37 102,58 147,59 790,03 

9 28,16 102,51 147,57 189,27 

10 28,05 102,46 147,56 52,75 

11 28,01 102,43 147,55 16,07 

12 27,98 102,41 147,54 5,12 

13 27,97 102,40 147,54 1,66 

14 27,96 102,39 147,54 0,1 

 

In the second case, the initial class centers are arbitrarily chosen as:  (c1, c2, c3) = (1, 2, 3). Table 
3, shows that the algorithm converges to the same final class centers as in the first case, (c1, c2, 
c3) = (27.96, 102.39, 147.53), after 21 iterations.  

 

Table 3. Different states of the parallel fuzzy classification algorithm starting from class centers 
(c1, c2, c3) = (1, 2, 3) 

 

Iteration 
Value of each  class center  Absolute value 

of the Error 

1n J −− nJ  C1 C3 C2 

1 1,00 2,00 3,00 96142309,83 

2 103,37 118,34 113,33 86051891,68 

3 97,67 129,09 124,34 1672751,62 

4 89,09 138,00 127,86 1348767,60 

5 80,14 145,70 124,04 1362933,52 

6 68,09 149,80 119,12 1250012,47 

7 53,42 150,18 114,61 1149554,44 

8 42,00 149,79 110,60 629238,18 

9 35,37 149,18 107,59 233335,30 

10 31,90 148,63 105,55 78947,64 

11 30,10 148,22 104,27 26683,02 

12 29,14 147,95 103,48 9012,82 

13 28,62 147,78 103,02 3024,55 

14 28,33 147,68 102,75 1007,82 

15 28,17 147,61 102,60 334,00 

16 28,07 147,58 102,51 110,30 

17 28,02 147,56 102,45 36,34 

18 27,99 147,55 102,42 11,96 

19 27,97 147,54 102,41 3,93 

20 27,97 147,54 102,40 1,29 

21 27,96 147,53 102,39 0,1 

 

In the third case, the initial class centers are arbitrarily chosen as:  (c1, c2, c3) = (140, 149, 150).  
Table 4, shows that the algorithm converges to the same final class centers as in the first case, (c1, 
c2, c3) = (27.96, 102.39, 147.53), after 17 iterations.  
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Table 4. Different states of the parallel fuzzy classification algorithm starting from class centers 
(c1, c2, c3) = (140, 149, 150). 

 

Iteration 
Value of each  class center  Absolute value 

of the Error 

1n J −− nJ  c1 c2 c3 

1 140,00 149,00 150,00 15560879,96 

2 111,26 119,70 140,72 6732394,85 

3 88,45 109,02 145,64 2869304,41 

4 67,66 104,62 147,64 1908707,56 

5 48,77 104,28 147,85 1224690,56 

6 37,57 104,20 147,90 392855,00 

7 32,31 103,76 147,89 84405,72 

8 29,97 103,30 147,81 17836,70 

9 28,93 102,96 147,73 4301,86 

10 28,44 102,73 147,66 1196,10 

11 28,21 102,59 147,61 364,36 

12 28,09 102,50 147,58 116,07 

13 28,03 102,45 147,56 37,68 

14 27,99 102,42 147,55 12,33 

15 27,98 102,41 147,54 4,04 

16 27,97 102,40 147,54 1,33 

17 27,96 102,39 147,53 0,1 

 

In the fourth case, the initial class centers are chosen, using the a preprocessing parallel histogram 
computation procedure of [25, 26] that orients the class centers towards the histogram modes of 
the image. In this case, the initial values of the class centers are: (c1, c2, c3) = (23,102,150 ). For 
this case,  we notice that the algorithm converges to the same final class centers as in the first case, 
(c1, c2, c3) = (27.96, 102.39, 147.53), after only 8 iterations. See Table 5. 

 

Table 5. Different states of the parallel fuzzy classification algorithm starting from class centers 
(c1, c2, c3) = (23, 102, 150). 

 

Iteration 
Value of each  class center  Absolute value 

of the Error 

1n J −− nJ  c1 c2 c3 

1 23,00 102,00 150,00 2399103,06 

2 25,98 102,51 148,00 68294,83 

3 27,19 102,43 147,65 5373,00 

4 27,65 102,39 147,56 675,20 

5 27,83 102,37 147,54 92,75 

6 27,90 102,37 147,53 13,68 

7 27,93 102,38 147,53 2,27 

8 27,94 102,38 147,53 0,05 
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To illustrate this analysis we use the following figures 4, 5, 6 and 7, to show the curves of the dif-
ferent data, respectively, of Tables 2, 3,  4 and 5. Theses curves represent the dynamic changes of 
each class center. 

 
 
 
 
 
 
 

 

 

Figure 4. Case 1: Dynamic changes of the class 
centres starting from values  (c1,c2, c3) = (1, 
30, 255)  

Figure 5. Case 2: Dynamic changes of the class 
centres starting from values (c1,c2, c3) = (1, 2, 3) . 

  
 

 

 

 

 

 

 

Figure 6. Case 3: Dynamic changes of the class 
centres starting from values (c1,c2, c3) = 
(140,149, 150)  

 

 

 

 

 

 

 

Figure 7.  Case 4: Dynamic changes of the class 
centres starting from values  (c1,c2, c3) = (23, 
102,150)  

 

Through the obtained results of the above cases of study, we can see that the algorithm converges 
to the same class centers. Its complexity in terms of iteration number depends on the initial values 
of the class centers. 

In order to evaluate the properties of the proposed algorithms, we  have to compare the obtained 
results to other former works proposed in [27] for PCM algorithm. 

In Figure 8, we start a comparison between the obtained results of the proposed "Parallel Fuzzy C-
means" and parallel C-means of [27], For the same image and the same initialization parameters. 
We notice the following remarks:  

 

� With PFCM, final values of the cluster centers are exactly the same regardless of the initial 
values cluster centers. While in the case of PCM, we notify some differences between final 
cluster centers. This leads to conclude that the PCM algorithm exits the classification 
procedure even if it has not yet reached the real centers. Thus, we can say that PFCM is more 
accurate than PCM. 

� For example, in the case of the first initialization, PCM leaves the classification in the fifth 
iteration, but  PFCM continues to seek more accurate information until the 14th iteration. 
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a) PFCM and PCM Class centers  of case 1 

 

 

 

 

 

 

 

b) PFCM and PCM Class centers of case 2. 

 
 

 

 

 

 

 

 

c) PFCM and PCM Class centers  of case 3. 

 

 

 

 

 

 

 

c) PFCM and PCM Class centers of case 4. 

Figure 8. Dynamic changes for different initialisations of class centers for PFCM and PCM 
algorithms. 

5. Complexity Analysis 

In order to evaluate the complexity of our PFCM algorithm, it is useful to report the complexities 
of all its stages. They are summarized in the following table 6. 

 

Table 6. The complexities of each stage of the proposed parallel algorithm 

Stage Time Complexity 

1- Data broadcasting O(1) + O(c)  

2- Distance computation  O(c) + O (log2 c)  

3- Membership decision  O(1)  

4- Objective function computation (N))2log.( c) 2(log O cO+  

5- Loop stop test O(1)  

6- New class center determination (N))2log.()( cOcO +  

The complexity of the proposed algorithm (N))2log.( c) 2(log OO(c) cO++  

The global complexity of our PFCM is:  ))(log. c logO(c 22 Nc++  times  

If we consider a number of M features for each data point, the number M appears in some steps of 
the algorithm. Hence, this algorithm can be extended easily for any (M>1) features. In this case the 
complexity becomes: 

≈++ timesNc ))(log. c logO(Mc 22  timesNcMcO ))(log( 2+  

While for   the PCM algorithm the complexity is:  timesc
Nc ))(log.O(Mc 2+ .  

In this paper, the input data set of the algorithm is a gray leveled image, where each point has M=1 
feature (its gray level) as in [27]. 
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As shown in table 7, we can finally conclude that the proposed PFCM algorithm is more accurate 
than the PCM one. But its complexity remains greater than the one obtained in [27] and equal to 
these in [28]  

Table 7.  Comparison of complexities for parallel C-mean and Fuzzy C-mean algorithms. 

Reference Algo. Architecture Bus width (bit) Processors Time complexity 

O.Bouattane [27]  PCM RMESH O(log2 N) N O(k.M +log2 (k.(N/k)k) 

Jenq [28]   PCM RMESH O(log2 N) N O(kM + k log2 N) 

This paper PFCM RMESH O(log2 N) N O(k.M +k log2 N) 

 

6. CONCLUSION  

In this paper, we have presented a method for parallelizing the fuzzy c-means classification 
algorithm and its implementation on a massively parallel reconfigurable mesh computer. An 
application of this algorithm to the MRI images segmentation was considered.  The elaborated 
program was performed on the reconfigurable mesh computer emulator. The obtained results 
show that, in little number of iterations, the algorithm converges to the same final class centers 
what ever their starting values. This is to proof its accuracy comparing to the well known C-mean 
algorithms. Hence, the parallel computation method is proposed essentially to reduce the 
complexity of the fuzzy clustering algorithms. Also it was shown that to enhance the effectiveness 
of this work, it is useful to improve the complexity of this algorithm by avoiding random 
initializations of the class centers. 
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