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Hyun Lee, Member, IEEE, Jae Sung Choi, and Ramez Elmasri, Member, IEEE

Abstract—In home-based care, reliable contextual information
of remotely monitored patients should be generated by correctly
recognizing the activities to prevent hazardous situations of the
patient. It is difficult to achieve a higher confidence level of con-
textual information for several reasons. First, low-level data from
multisensors have different degrees of uncertainty. Second, gen-
erated contexts can be conflicting, even though they are acquired
by simultaneous operations. We propose the static evidential fu-
sion process (SEFP) as a context-reasoning method. The context-
reasoning method processes sensor data with an evidential form
based on the Dezert–Smarandache theory (DSmT). The DSmT ap-
proach reduces ambiguous or conflicting contextual information
in multisensor networks. Moreover, we compare SEFP based on
DSmT with traditional fusion processes such as Bayesian networks
and the Dempster–Shafer theory to understand the uncertainty
analysis in decision making and to show the improvement of the
DSmT approach compared to the others.

Index Terms—Context reasoning, Dezert–Smarandache theory
(DSmT), reliability, sensor data fusion process, static evidential
networks (SENs).

I. INTRODUCTION

A CONTEXTUAL analysis for situation assessment (SA)
and metrics have been important topics in the informa-

tion fusion (IF) literature for many years. An SA synthesizes
different kinds of selected information using fusion processes,
provides interfaces between the user and the automation, and
focuses on data collection and management. Although an SA
has been recognized in the IF and human factors literature,
many issues in context-reasoning methods in some applications
exist [1], [8], [25]. For instance, a pervasive healthcare monitor-
ing system (PHMS) [13], which supports pervasive services to
the patient using pervasive computing technologies (e.g., radio
frequency identification (RFID) devices and multisensory) in
home-based care can correctly analyze contextual information
of the patient [2], [19], [20]. A PHMS enables continuous
healthcare monitoring with the help of these embedded com-
ponents and then provides methods for remote disease man-
agement in real time and independent safe living, as shown
in Fig. 1. Reliable contextual information should be generated
to correctly recognize the activities and then to identify haz-
ardous situations of the patient by applying a context-reasoning
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Fig. 1. Pervasive healthcare monitoring system.

method [18]. However, a higher confidence level in the gen-
erated contexts is difficult to produce due to the following
reasons: 1) multisensors may not provide reliable information
due to faults, operational tolerance levels, or corrupted data;
2) inaccurate sensor readings can produce misunderstandings
that lead to incorrect services to the patient; 3) some sensor
readings give information about context only at an abstract
level, which can include uncertainty to some extent; and
4) contextual information of the patient is more ambiguous if
data from multisensors are corrupted or conflicted. It is difficult
to make a context-reasoning method for directly inferring the
correct situation of the patient.

To deal with these problems within a new application such
as home-based care, first, we define a relation-dependency-
based context classification and then construct a state-space
context modeling based on the defined context classification
[11]. Second, we make a static evidential fusion process (SEFP)
as a context-reasoning method to obtain a higher confidence
level of contextual information. In particular, we process sensor
data with an evidential form based on the Dezert–Smarandache
Theory (DSmT) [4]–[6]. DSmT reduces the uncertainty level
and obtains a rational decision of contextual information using
a proportional conflict redistribution 5 (PCR5) combination
rule [27] and a generalized pignistic transformation (GPT) [7].
The PCR5 rule redistributes the partial conflicting mass to
the elements involved in the partial conflict, considering the
canonical form of the partial conflict. The PCR5 rule is the
most mathematically exact redistribution of conflicting mass
to nonempty sets following the logic of the conjunctive rule
[5]. Hence, the PCR5 rule is considered a combination rule
in this paper. To take a rational decision, GPT generalizes the

1083-4427/$26.00 © 2010 IEEE



LEE et al.: STATIC EVIDENTIAL NETWORK FOR CONTEXT REASONING 1233

classical pignistic transformation (CPT), which has two levels
of processes: 1) creedal (for combination of evidence) and
2) pignistic (for decision making) within the DSmT framework
[28], [29]. The beliefs are represented by belief functions at the
creedal level, and then, the beliefs induce a probability function
at the pignistic level to make decisions. The decision is also
taken by the maximum of the pignistic probability function.
Finally, we compare SEFP based on DSmT with existing and
contemporary methods such as Bayesian networks (BNs) [22],
[24] and the Dempster–Shafer theory (DST) [10], [30] for
performing an uncertainty analysis in decision making as to the
ability to measure the probability, belief, or uncertainty levels
in multisensor networks.

The rest of this paper is organized as follows. The basics of
sensor data fusion methods are introduced in Section II. We
define requirements for context reasoning in home-based care
in Section III. SEFP is described as a context-reasoning method
in Section IV. Section V performs a case study to infer the
situation of the patient using the SEFP. We compare and then
analyze the results of fusion processes in Section VI. We then
conclude this paper in Section VII.

II. BASICS OF SENSOR DATA FUSION METHODS

A. Bayesian and Probability Theories

To model probabilistic relationships among distinct interests
in uncertain reasoning, BNs apply Bayes’ theorem and satisfy
Markov’s condition [3]. BNs are directed acyclic graphs, where
the nodes are random variables that represent various events,
and the arcs between nodes represent causal relationships.
The possibility of the particular configuration of BNs refers
to an instantiation of the random variables with values from
2-D value vectors and is determined by its joint probability.
When the precondition for inference is already available, we
can compute a posterior probability distribution of a model.
A learning operation in BNs may take place with either fully
or partially observed variables. In any case, the objective of
the learning is to find a single model that best explains the
observed evidence. BNs do not necessarily require a transition
from one state to another for computing the global or local state
of the network. BNs compute a single higher level context as
an abstraction of numerous primitive contexts. However, BNs
cannot represent the ignorance [15], which manages the degree
of uncertainty, caused by the lack of information.

B. DST

The DST (evidential theory) offers an alternative to prob-
abilistic theory by providing schemes for encoding the epis-
temic uncertainty into the model of a system [26]. The DST
is a generalization of traditional probability, which allows us
to better quantify uncertainty. Shafer’s model, denoted here
by M0(Θ), considers Θ = {θ1, . . . , θn} as a finite set of n
exhaustive and exclusive elements that represent the possible
states of the sensor. The set, denoted by Θ, is called the frame
of discernment of the sensor in DST. For example, {1, 0}
is the frame of discernment for a sensor in which one (1)

represents that the value of a sensor is more than the predefined
threshold and zero (0) represents that the value is not more than
the predefined threshold. The power set of Θ, denoted 2Θ, is
defined by the following rules 1, 2, and 3 given based on Θ and
M0(Θ).

1) ∅, θ1, . . . , θn ∈ 2Θ.
2) If θ1, θ2 ∈ 2Θ, then θ1 ∪ θ2 belongs to 2Θ.
3) No other elements belong to 2Θ, except those obtained by

rule 1 or 2.

Without loss of generality, the general set, denoted by GΘ,
on which will be defined the basic belief assignments is equal to
2Θ if M0(Θ) is adopted. In general, many factors that surround
the sensor have an impact on the quality of the observation of
the sensor. The evidential theory uses a number in the range
[0, 1] to represent the degree of belief in the observation. The
distribution of the unit of a belief over the frame (Θ) is called
evidence. A mass function m(.) : GΘ → [0, 1] associated with
a given source, e.g., s, of the evidence is defined to represent
the distribution of a belief and to satisfy the following two
conditions:

ms(∅) = 0
∑

X∈GΘ

ms(X) = 1. (1)

X is a subset of Θ, and ms(X) is the general basic belief
assignment (GBBA) of X that the source s committed.

In DST, a range of the probabilities, rather than a single
probabilistic number, is used to represent the uncertainty of the
sensor. The lower and upper bounds on probability are called
Belief (Bel) and Plausibility (Pl), respectively. The Bel
and Pl of any proposition X ∈ GΘ are defined as

Bel(X) Δ=
∑
Y ⊆X

Y ∈GΘ

m(Y ) Pl(X) Δ=
∑

Y ∩X=∅
Y ∈GΘ

m(Y ). (2)

Based on (2), Bel shows the degree of a belief to which
the evidence supports X , whereas Pl shows the degree of a
belief to which the evidence fails to refute X . The DST is often
employed to combine the evidence gathered from two or more
independent sources to minimize the effect of imprecision. As
a generalized probabilistic approach, the DST, which considers
the upper and lower bounds on probability, has distinct features
compared to Bayesian methods. The DST represents the ig-
norance caused by the lack of information and aggregates the
belief when new evidences are accumulated [10]. This feature
is useful for managing the degree of uncertainty.

C. DSmT

The basic idea of DSmT is to consider all elements of Θ as
not precisely defined and separated so that no refinement of Θ
into a new finer set Θref of disjoint hypotheses is possible in
general, unless a number of integrity constraints are known,
and in such a case, they will be included in the DSm model of
the frame. Shafer’s model [26] assumes Θ to be truly exclusive
and appears only as a special case of the DSm hybrid model
in DSmT. The hyperpower set, denoted by DΘ, is defined by
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rules 1, 2, and 3, without additional assumption on Θ but the
exhaustivity of its elements in DSmT.

1) ∅, θ1, . . . , θn ∈ DΘ.
2) If θ1, θ2 ∈ DΘ, then θ1 ∩ θ2 and θ1 ∪ θ2 belong to DΘ.
3) No other elements belong to DΘ, except those obtained

by rule 1 or 2.
When M0(Θ) holds, DΘ reduces to 2Θ. Without loss of

generality, GΘ is equal to DΘ if the DSm model is used,
depending on the nature of the problem.

D. Combination Rules (Dempster’s and PCR5)

Both combination rules (Dempster’s and PCR5) are defined
based on the conjunctive consensus operator for two sources
cases by

m12(X) =
∑

X1,X2∈GΘ
X1∩X2=X

m1(X1)m2(X2). (3)

The total conflicting mass drawn from two sources, denoted
by k12, is defined as

k12 =
∑

X1,X2∈GΘ

X1∩X2=∅

m1(X1)m2(X2) =
∑

X1,X2∈GΘ

X1∩X2=∅

m(X1 ∩ X2).

(4)

Based on (3) and (4), the total conflicting mass is the sum of
partial conflicting masses. If k12 is close to 1, the two sources
are almost in total conflict, whereas if k12 is close to 0, the two
sources are not in conflict.

Within the DST framework, Dempster’s combination rule
of m1(.) and m2(.) is obtained based on M0(Θ) and two
independent sources m1(.) and m2(.). In this case, GΘ = 2Θ;
then, mDS(∅) = 0 and ∀ (X �= ∅) ∈ 2Θ by

mDS(X) =
1

1 − k12
m12(X), (k12 �= 1) (5)

where m12(X) and k12 are defined by (3) and (4). Dempster’s
rule can directly be extended for the combination of N inde-
pendent and equally reliable sources of evidence.

However, Dempster’s combination rule has limitations and
weaknesses. The results of the combination have low confi-
dence when a conflict becomes important between sources [4],
[6], [16]. For instance, consider Θ = {θ1, θ2} and the basic
belief masses that are represented by the following mass matrix:

M =
(

m1(θ1) = 1 m1(θ2) = 0 m1(θ1 ∪ θ2) = 0
m2(θ1) = 0 m2(θ2) = 1 m2(θ1 ∪ θ2) = 0

)
.

In this case, Dempster’s combination rule cannot be applied,
because the conflicting mass of two independent evidences
is equal to 1 (k12 = 1). Then, one formally gets m12(θ1) =
0/0 and m12(θ2) = 0/0. However, if one adopts M0(Θ) and
applies the PCR5 rule as a combination rule, one formally gets
m12(θ1) = 0.5 and m12(θ2) = 0.5. Hence, we use the PCR5
combination rule, which overcomes drawbacks of Dempster’s
combination rule.

Within the DSmT framework, the PCR5 combination rule
redistributes the partial conflicting mass only to the elements

involved in that partial conflict. For this approach, first, the
PCR5 rule calculates the conjunctive rule of the belief masses
of sources. Second, the PCR5 rule calculates the total or partial
conflicting masses. Last, the PCR5 rule proportionally redis-
tributes the conflicting masses to nonempty sets involved in the
model according to all integrity constraints.

The PCR5 combination rule is defined for two sources [6]:
mPCR5(∅) = 0 and ∀ (X �= ∅) ∈ GΘ. We have

mPCR5(X) = m12(X)

+
∑

Y ∈GΘ\{X}
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )
m2(X) + m1(Y )

]
(6)

where m12 and all denominators such as m1(X) + m2(Y )
and m2(X) + m1(Y ) differ from zero (0). If a denominator
is zero, that fraction is discarded. All sets in formulas are
in canonical forms. For example, the canonical form of X =
(A ∩ B) ∩ (A ∪ B ∪ C) is A ∩ B.

E. Pignistic Transformations: CPT and GPT

When a decision must be taken, the expected utility theory,
which requires a CPT from a basic belief assignment m(.) to a
probability function P{.}, is defined in [7] as follows:

P{A} =
∑

X∈2Θ

|X ∩ A|
|X| m(X) (7)

where |A| denotes the number of worlds in the set A (with
convention |0|/|0| = 1, to define P{0}). P{A} corresponds
to BetP (A) in Smets’ notation [28]. Decisions are achieved
by computing the expected utilities, and the maximum of the
pignistic probability is used as a decision criterion.

Within the DSmT framework, it is necessary to generalize
the CPT to take a rational decision. This GPT is defined by [7]:
∀ (A) ∈ DΘ. We have

P{A} =
∑

X∈DΘ

CM (X ∩ A)
CM (X)

m(X) (8)

where CM (X) denotes the DSm cardinal of a proposition X
for the DSm model M of the problem under consideration.

In this case, if we adopt M0(Θ), (8) reduces to (7) when DΘ

reduces to 2Θ. For instance, we get a basic belief assignment
with nonnull masses only on θ1, θ2 and θ1 ∪ θ2. After applying
the GPT, we get

P{∅} = 0 P{θ1 ∩ θ2} = 0

P{θ1} =m(θ1) +
1
2
m(θ1 ∪ θ2)

P{θ2} =m(θ2) +
1
2
m(θ1 ∪ θ2)

P{θ1 ∪ θ2} =m(θ1) + m(θ2) + m(θ1 ∪ θ2) = 1.

F. Disjunctive Rule for the TBF

The temporal belief filter (TBF) [21], which reflects that only
one hypothesis concerning activity is true at each time point,
ensures a temporal consistency with an exclusivity. Within a
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TBF, the disjunctive rule of combination (m∪(.)) is used for
computing the prediction from the previous mass distributions
and the model of evolution. m∪(.) is defined for two sources
[4]: 1) m∪(∅) = 0 and 2) ∀ (C) ⊂ Θ. We have

m∪(C) =
∑
i,j

C=Xi∪Yj

m1(Xi)m2(Yj), C �= ∅ (9)

where the core of the belief function given by m∪(C) is equal
to the union of the cores Bel(X) and Bel(Y ).

III. REQUIREMENTS FOR CONTEXT REASONING

A. Characteristics of Sensors

Multisensors such as medical body sensors, RFID devices,
environmental sensors and actuators, location sensors, and time
stamps are utilized in a PHMS [13]. These sensors are operated
by predefined rules or learning processes of the expert sys-
tems. They often have thresholds to represent the emergency
status of the patient or to operate actuators. Each sensor can
be represented by an evidential form such as 1 (active) and
0 (inactive) based on the threshold. Whenever the state of
a certain context associated with a sensor is changed, the
value of a sensor can change from 0 to 1 or from 1 to 0.
For instance, a medical body sensor activates the emergency
signal if the sensor value is more than the predefined thresh-
old. An environmental sensor operates the actuator based on
the fuzzy systems. A location-detecting sensor operates if a
patient is within the range of the detection area. Thus, we
can simply express the status of each sensor as a frame:
Θ = {Thresholdover, Thresholdnot−over} = {1, 0}.

Sensor data are inherently unreliable or uncertain due to
technical factors and environmental noise. Different sensors
may have various discounting factors [error rates (r)]. Hence,
we can express the degree of reliability, which is related in an
inverse way to the discounting factor. The smaller reliability R
corresponds to a larger discounting factor D, i.e.,

R = 1 − D(r). (10)

To infer the activity based on evidential theory, reliability
discounting methods that transform beliefs of each source are
used to reflect the sensor’s credibility, in terms of discount
factor [error rate (r)] (0 ≤ r ≤ 1). The discount mass function
is defined as

mr(X) =
{

(1 − r)m(X), X ⊂ Θ
r + (1 − r)m(Θ), X = Θ (11)

where the source is absolutely reliable (r = 0), the source is
reliable with an error rate (r) (0 < r < 1), and the source is
completely unreliable (r = 1).

B. Context Classification

Contextual information of the patient should be presented
by a generalized form, and the quality of a given piece of
contextual information should be considered by the applied
context classification. It is difficult to make a generalized

Fig. 2. Relation-dependency approach as the applied context classification.

context classification, because the number of ways to describe
an event or an object is unlimited, and there are no standards or
guidelines regarding the granularity of contextual information.
Hence, we apply the relation-dependency-based context classi-
fication, which is proposed in [11]. The dependency is a special
type of relationship that exists not between entities and attri-
butes but between associations themselves [9]. Without knowl-
edge of such dependencies, inappropriate decisions may be made
by the context-aware applications, which can lead to wrong
operations to the patient. Therefore, we consider the relation-
dependency approach based on spatial–temporal criteria, as
shown in Fig. 2. In this approach, contexts are represented by
three relation dependencies: 1) discrete facts; 2) continuous
facts; and 3) patient’s interaction. These relation-dependency
components consist of context state (S(t)), sensor’s static
threshold (T (t)), location of the patient (R(t)), primary
context (P ), secondary context (S), and preference (Pref).

1) Discrete Facts: The context can be expressed by three
types of discrete facts: 1) discrete value; 2) enumerative set;
and 3) state context. The discrete value of a context has no
dependency. It can directly lead to contextual information in
some cases. In general, the values of context are defined in a list
or a set of discrete values. The enumerative set is constructed
with this finite set of attributes that are chosen at any given time
and location, although the total size of the set may theoretically
be infinite. The state context, which consists of a form of
an enumerative set, has two opposite values and can toggle
between them. It is useful to make a binary evidential fusion
process. For instance, a state context, which is composed of
the enumerative set, can recognize the particular contextual
information of the patient: 1) Emergency or 2) No Emergency.

2) Continuous Facts: The context can be expressed by
two types of continuous facts: 1) static threshold and 2) dy-
namic metrics. The static threshold of a context is defined
by predefined rules, although the value of a context continu-
ously changes. Upper bounds, lower bounds, and comparative
criteria are involved in this category. The dynamic metrics,
which combine preference values into the static threshold, are
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Fig. 3. Hierarchical interrelationship among multisensors, related contexts,
and relevant activities based on the state-space modeling.

used to autonomously estimate or infer the future contextual
information.

3) Patient-Interaction Events: Two types of context, pri-
mary context P and secondary context S, are derived from
multisensor or information sources. P directly maintains a one-
to-one interaction event, which has a discrete value. S main-
tains two different interactions: 1) many-to-one interactions and
2) one-to-many interactions. More than one P (e.g., humidity,
temperature, and lighting level) may be needed to generate S
(e.g., patient’s feeling) in many-to-one interaction events. In
addition, one P (e.g., the value of a respiratory rate sensor)
may be needed to generate S (e.g., sleeping situation) in one-
to-many interaction events.

C. State-Space-Based Context Modeling

A state-space-based context modeling with an evidential
form is defined in [11] to represent the situation of the patient
using context concepts, which is similarly used in [17]. Static
weighting factors of the selected data within the given time and
location are applied to represent the quality of data. This context
modeling consists of a hierarchical interrelationship among
multisensors, related contexts, and relevant activities within a
selected region, as shown in Fig. 3. Each context concept is
defined as follows.

1) Context Attribute: A context attribute, denoted by αi,
is defined as any type of data that are utilized in inferring
situations. A context attribute is often associated with sensors,
virtual or physical, where the value of a sensor reading denotes
the value of a context attribute at a given time t, denoted by
αt

i. For example, the pressure sensor attached on the sofa or
the temperature sensor attached on the body of the patient is
an example of a context attribute. This sensor cannot directly
identify situations on its own, but it can estimate the situation
by combining its values as context attributes.

2) Context State: A context state, denoted by a vector Si,
describes the current state of the applied application in relation
to a chosen context. It is a collection of K context attribute
values, which are used to represent a specific state of the
system at the given time t. A context state is denoted as

St
i = (αt

1, α
t
2, . . . , α

t
K), where each value αt

i corresponds to
the value of an attribute αi at the given time t. Whenever
contextual information is recognized by certain selected sen-
sors, which can be used to make a context attribute, a context
state changes its current state, depending on the aggregation
of these context attributes. For instance, a context state that
consists of context attributes such as the body temperature
sensor, the blood pressure sensor, and the respiratory rate sensor
can indicate an emergency situation of the patient, depending
on the values of the sensors.

3) Situation Spaces: A situation space, denoted by a vector
space Ri = (αR

1 , αR
2 , . . . , αR

K), describes a collection of re-
gions corresponding to predefined situations and that consists
of K acceptable regions for these attributes. An acceptable
region αR

i is defined as a set of elements V that satisfies a
predicate P , i.e., αR

i = V \ P (V ). The particular contextual
information can be performed or associated with a certain
selected region. For example, a sleeping activity of the patient,
which is predefined in the expert system, can be associated with
a selected region such as a bedroom or a living room.

4) Quality of Data: Given a context attribute i, a quality
of data ψi associates weights ω1, ω2, . . . , ωK with combined
attributes of values αt

1 + αR
1 , αt

2 + αR
2 , . . . , αt

K + αR
K of i,

respectively, where
∑K

j=1 ωj = 1. The weight ωj ∈ (0, 1] rep-
resents the relative importance of a context attribute αj com-
pared to other context attributes in the given time t and
region R. For instance, a higher respiratory rate may be a
strong indication of the fainting situation of a patient, whereas
other context attributes such as a blood pressure sensor and a
body temperature sensor may not be very important to estimate
that specific situation compared to the respiratory rate sensor.
In addition, a context attribute (αt

i) within a context state
(St

i = (αt
1, α

t
2, . . . , α

t
K)) has various individual weights for αt

i

per different time intervals in the same situation space (αR
i ).

For example, a respiratory rate (50 Hz) at the current time
is a stronger indication of the fainting situation of a patient
compared with a respiratory rate (21 Hz) at a previous time.
However, the same context attribute can also have a different
degree of importance when considered in different contexts.
Thus, we only consider the quality of data with the predefined
context attributes, a selected region, and relevant activities, i.e.,
sleeping or fainting in this paper.

IV. SEFP

Context reasoning is performed based on static evidential
networks (SENs) to reduce the uncertainty of a patient’s situ-
ation and to help in decision making. Using evidential fusion
processes such as the frame of discernment, the multivalued
mapping, the combination rule, and the belief filter, we can
apply context reasoning based on evidential fusion networks.

A. Evidential Operations With SENs

To infer the activity of the patient along SENs, first, the
evidential form, which is either active (1) or inactive (0), can
represent all possible values and their combination values of
the sensors. Table I shows an example of evidential forms such
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TABLE I
EXAMPLES OF THE FRAMES OF DISCERNMENT Θ

Fig. 4. Static evidential network based on state-space context modeling.

as the frames of discernment (Θ). This evidential form can be a
component of the SENs.

Based on the proposed state-space context modeling, the
SEN is constructed as shown in Fig. 4. Within a SEN, context
reasoning is performed to make a higher confidence level of
the patient’s situation. In this case, a context attribute consists
of binary values of the multisensors. The binary values are
determined by the predefined threshold values controlled by the
expert system.

Second, reliability discounting methods (mass functions),
which is defined as in (11), transform beliefs of individual
sources to reflect the credibility of the sensor. Within a SEN, a
discounting factor [error rate (r)] that depends on the technical
limitations of the sensors or environmental noise is applied to
each context attribute.

Third, multivalued mapping is applied to reflect the relation-
ship between two frames of discernment (ΘA,ΘB), which rep-
resent the evidence to the same problem with different views.
A multivalued mapping Γ describes a mapping function Γ :
ΘA ← 2ΘB by assigning a subset Γ(ei) of ΘB to each element
ei of ΘA. Based on the multivalued mapping, a translation can
be utilized to determine the impact of evidence that originally
appears on a frame of discernment on elements of a compatibly
related frame of discernment. For example, suppose that ΘA

carries a mass function m; then, the translated mass function
over the compatibly related ΘB is defined as

m′(Bj) =
∑

Γ(ei)=Bj

m(ei) (12)

where ei ∈ ΘA, Bj ⊆ ΘB , and Γ : ΘA → 2ΘB is a multivalued
mapping.

Within a SEN, a multivalued mapping is applied to the
context attributes to represent the relationships between sen-
sors and associated objects by translating mass functions. In
addition, this mapping is applied to the related context state,

TABLE II
EXAMPLES OF MULTIVALUED MAPPING

which consists of context attributes having an active (1) value
and an inactive (0) value, to represent the relationships among
context attributes. In this case, each context state has different
static weighting factors. These weighting factors help infer an
activity using a multivalued mapping among context states. We
assume that the weighting factors of context state (S1) and (S2)
are 0.5 and 0.5, respectively. Table II shows an example of a
multivalued mapping.

Fourth, the belief distributions on the same frame can be
combined by several independent sources of the evidence
to achieve the conjunctive consensus with the conflict mass.
Within the DST framework, the Dempster’s combination rule
(5) is used. However, within the DSmT framework, the PCR5
rule (6) is currently used as a combination rule. Regardless of
whether the conflicting mass is bigger or smaller, the PCR5 rule
mathematically does a better redistribution of the conflicting
mass than other rules, because the PCR5 rule goes backward on
the tracks of the conjunctive rule. Within a SEN, the PCR5 rule
is applied to context states to get a consensus for recognizing
the activity of the patient.

Finally, a range of probabilities (the lower and upper bounds
on probability) are calculated to represent the degree of belief
using (2), and then, the uncertainty levels (ignorance) in the
evidential framework is measured by using belief functions
such as Bel and Pl after applying two combination rules.

Uncertainty levels(= ignorance). We have

Uncertainty Levels (I) = Pl − Bel. (13)

To make a decision, the expected utility and the maximum of
the pignistic probability (8) is utilized as a decision criterion.
Within a SEN, the situation of the patient is inferred by calcu-
lating the belief and uncertainty levels with a decision rule such
as the GPT.

Therefore, the procedures of the SEFP, which is a context-
reasoning method, consist of seven steps.

1) Represent the evidence on each sensor as a mass function
in the evidential framework.

2) Apply a static discounting factor (error rate) (r) into a
sensor using (10) and (11) to get sensor credibility.

3) Translate a multivalued mapping representing relation-
ships between sensors and associated objects to make a
context attribute using (12).

4) Aggregate context attributes and then translate using (12)
to make a context state.

5) Apply different static weighting factors to each context
state to sum up context states.
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6) Apply the PCR5 rule to context states to achieve the
consensus with the conflict mass and then to redistribute
the partial conflicting mass using (3)–(6).

7) Calculate the belief levels, uncertainty levels, and the
maximum of pignistic probability of each activity and
then make a decision using (1), (2), (7), (8), and (13).

B. TBF for Temporal Consistency

A TBF can be used to ensure temporal consistency with an
exclusivity between two consecutive time stamps when only
one hypothesis concerning activity is true at each time. The
TBF assumes that the GBBA at the current time (t) is close to
the GBBA at the previous time (t − 1). Based on this assump-
tion, a model of evolution predicts the current GBBA taking the
GBBA at (t − 1) into account. The TBF process works at each
time (t) and consists of four steps: 1) prediction; 2) fusion;
3) detection of conflict; and 4) model change, if required [21].

For instance, if the activity of the patient was “fainting” (F )
at time (t − 1), then it would be partially “fainting” (F ) at time
(t). This approach is an implication rule for F , which can be
weighted by a confidence value of mF {.} ∈ [0, 1]. In this case,
the vector notation of a GBBA defined on (Θ) is used

mΘ = [mΘ(∅) mΘ(¬F ) mΘ(F ) mΘ(¬F ∪ F ) ] .

A model of evolution can be interpreted as a GBBA defined as

mΘ
F = [ 0 1 − PlF BelF PlF − BelF ]T . (14)

Depending on the current model M with only two focal sets,
the disjunctive rule of combination is used for computing the
prediction from the previous GBBA at (t − 1) and the model of
evolution using (9)

m̂Θ
t,M = mΘ

t−1 (M∪) mΘ
M (15)

where mΘ
t−1 is the previous GBBA, and mΘ

M is the model of
evolution. In addition, the prediction for the fainting F of the
patient at t is defined as

m̂Θ
t,F =

⎡
⎢⎣

0
1 − PlF × mΘ

t−1(¬F )
BelF × mΘ

t−1(F )
1 −

(
1 − PlF × mΘ

t−1(¬F ) + BelF × mΘ
t−1(F )

)

⎤
⎥⎦

(16)

and when mF = 1 or 0, the prediction reflects a total confidence
or a total ignorance with the current state, respectively.

Prediction m̂Θ
t,M and measurement mΘ

t represent two distinct
pieces of information. The fusion of the two distinct pieces
of information leads to a new GBBA whose conflict value
(CF ), which is similar to k12 of (4), is relevant for model
change requirement. Detection of conflict is required to analyze
whether the current model is valid. If the CF is not greater than
a predefined threshold, the model is kept as valid. However, if
the CF exceeds the predefined threshold, the model is changed.
After a model change, the new model is repeatedly applied to
the model evolution.

Fig. 5. Example of patient’s two possible context reasoning based on the SEN.

V. CASE STUDY

A. Applied Scenario

Many ambiguous situations of the patient can happen in
home-based care. Suppose that two possibilities (i.e., sleeping
or fainting) of the patient can happen on the sofa when the
environmental sensors (i.e., the lighting sensor and the heating
sensor of the living room) are turned on and the location sensor
(i.e., the pressure sensor attached on the sofa) becomes active.
To continuously check the status of the patient, medical body
sensors (i.e., the blood pressure sensor, the body temperature
sensor, and the respiratory rate sensor) are operated by the
expert system. Thus, we utilize six types of different sensors
in this scenario. Each sensor has a predefined threshold, and
their operations can be represented by evidential forms. We can
derive a SEN based on these simplified two cases, as shown in
Fig. 5. We then find out more closely correct situations through
context reasoning by calculating the belief, uncertainty, and
maximum pignistic probability levels of each related activity.
To calculate them, we assume that a discounting rate [error rate
(r)] and a static weighting factor of each sensor are fixed. In ad-
dition, we assume that a static weighting factor of the pressure
sensor, the location sensor, the motion sensor, the blood pres-
sure sensor, the body temperature sensor, and the respiratory
rate sensor are 0.5, 0.25, 0.25, 0.2, 0.2, and 0.6, respectively.
Three sensors—the location sensor, the motion sensor, and the
body temperature sensor—are not activated in Fig. 5.

B. Situation Inference

We can infer the situation of the patient using the proposed
evidential fusion method. Within a scenario, an evidence of the
sensor operation may deduce objects in detail or be summed up
to a context state by adapting a different weighting factor. That
evidence is then translated into the relevant activity recognition
by applying a multivalued mapping. On an activity recognition
step, several belief distributions can be combined by different
rules (Dempster’s & PCR5) of combination. Then, a decision
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is made by using the degree of belief, uncertainty, maximum
of pignistic probability, and TBF. Based on the simplified
scenario, context reasoning is performed by some steps of
evidential operations as described in [12].

First, we represent abbreviations for the pressure sensor
Ps, the location sensor Ls, the motion sensor Ms, the blood
pressure sensor Bps, the body temperature sensor Bts, and the
respiratory rate sensor Rs in Fig. 5. We then represent a piece
of evidence on each sensor as a mass function. We have

mPs ({Ps}) = 1 mLs ({¬Ls}) = 1

mMs ({¬Ms}) = 1 mBps ({Bps}) = 1

mBts ({¬Bts}) = 1 mRs ({Rs}) = 1.

Second, we apply an error rate r to each sensor using (10)
and (11) to obtain each sensor credibility. Within our scenario,
we assume that the location sensor Ps has a 10% error rate, the
environmental sensors (Ls and Ms) have a 20% error rate, and
the medical body sensors (Bps, Bts, and Rs) have a 5%
error rate when they are manufactured. In addition, we apply
a multivalued mapping to represent the belief level of a context
attribute by translating a mass function using (12). We utilize
abbreviations for the sofa S, the lighting L, the heater H , the
blood pressure check device Bp, the body temperature check
device Bt, and the respiratory rate check device R. We then
aggregate context attributes and translate them into two related
context states using (12). A mass function on S, L, and H are
translated onto the context state 1 (CS1), and a mass function
on Bp, Bt, and R is translated onto the context state 2 (CS2).
Both CS1 and CS2 are used for determining the relevant
activities of the patient, i.e.,

m1CS1 ({CS1}) = mS ({S}) = mr
Ps ({Ps}) = 0.90

m1CS1 ({CS1,¬CS1}) = mS ({S,¬S})
= mr

Ps ({Ps,¬Ps}) = 0.10
m2CS1 ({¬CS1}) = mL ({¬L}) = mr

Ls ({¬Ls}) = 0.80
m2CS1 ({CS1,¬CS1}) = mL ({L,¬L})

= mr
Ls ({Ls,¬Ls}) = 0.20

m3CS1 ({¬CS1}) = mH ({¬H}) = mr
Ms ({¬Ms}) = 0.80

m3CS1 ({CS1,¬CS1}) = mH ({H,¬H})
= mr

Ms ({Ms,¬Ms}) = 0.20
m1CS2 ({CS2}) = mBp ({Bp}) = mr

Bps ({Bps}) = 0.95
m1CS2 ({CS2,¬CS2}) = mS ({Bp,¬Bp})

= mr
Bps ({Bps,¬Bps}) = 0.05

m2CS2 ({¬CS2}) = mBt ({¬Bt}) = mr
Bts ({¬Bts})

= 0.95
m2CS2 ({CS2,¬CS2}) = mBt ({Bt,¬Bt})

= mr
Bts ({Bts,¬Bts}) = 0.05

m3CS2 ({CS2}) = mR ({R}) = mr
Rs ({Rs}) = 0.95

m3CS2 ({CS2,¬CS2}) = mR ({R,¬R})
= mr

Rs ({Rs,¬Rs}) = 0.05.

Third, we sum up a context state by adapting a different static
weighting factor to each context attribute involved in the con-

text state. We assume that the weighting factor of CS1 consists
of S (50%), L (25%), and H (25%), and the weighting factor of
CS2 consists of Bp (20%), Bt (20%), and R (60%). We have

mCS1 ({CS1}) = (0.5)(m1CS1) = 0.45
mCS1 ({¬CS1}) = (0.25)(m2CS1 + m3CS1) = 0.40
mCS1 ({CS1,¬CS1}) = (0.5)(m1CS1)

+ (0.25)(m2CS1 + m3CS1)
= 0.15

mCS2 ({CS2}) = (0.2)(m1CS2) + (0.6)(m3CS2) = 0.76
mCS2 ({¬CS2}) = (0.2)(m2CS2) = 0.19
mCS2 ({CS2,¬CS2}) = (0.2)(m1CS2 + m2CS2)

+ (0.6)(m3CS2) = 0.05.

We assume that both CS1 and CS2 can be used for inferring
the sleeping (Sl) and fainting (F ) situations of the patient. In
this paper, we calculate two mass functions m1F and m2F to
identify the F situation of the patient, i.e.,

m1F ({F}) = mCS1 ({CS1}) = 0.45
m1F ({¬F}) = mCS1 ({¬CS1}) = 0.40

m1F ({F,¬F}) = mCS1 ({CS1,¬CS1}) = 0.15
m2F ({F}) = mCS2 ({CS2}) = 0.76

m2F ({¬F}) = mCS2 ({¬CS2}) = 0.19
m2F ({F,¬F}) = mCS2 ({CS2,¬CS2}) = 0.05.

Fourth, we apply (3)–(5) to m1F and m2F to achieve the
conjunctive consensus by combining two sources with the con-
flicting mass (k12). We then redistribute the partial conflicting
mass using (6) as follows:

M =
(

m1(F ) m1(¬F ) m1(F ∪ ¬F )
m2(F ) m2(¬F ) m2(F ∪ ¬F )

)

m12(∅) = 0 m12(F ) = 0.4785
m12(¬F ) = 0.1245 m12(F ∪ ¬F ) = 0.0075

k12 =m12(F ∩ ¬F )
=m1(F )m2(¬F ) + m1(¬F )m2(F )
= 0.3895

mDS(F ) =m1 ⊕ m2(F ) =
1

1 − k12
m12(F )

= 0.7838

mDS(¬F ) =
1

1 − k12
m12(¬F ) = 0.2039

mDS(F ∪ ¬F ) =
1

1 − k12
m12(F ∪ ¬F ) = 0.0123.

After achieving the value of k12, the partial conflicting mass
m1(F )m2(¬F ) is distributed to F and ¬F proportionally
with the masses m1(F ) and m2(¬F ) assigned to F and ¬F ,
respectively. We suppose that x1 and y1 is the conflicting mass
to be redistributed to F and ¬F , respectively, to calculate the
first partial conflicting mass m1(F )m2(¬F ) as follows:

x1

m1(F )
=

y1

m2(¬F )
=

x1 + y1

(0.45) + (0.19)
= 0.1336.

Thus, x1 = 0.0601, y1 = 0.0254.
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In addition, the partial conflicting mass m2(F )m1(¬F ) is
proportionally distributed to F and ¬F with the masses m2(F )
and m1(¬F ) assigned to F and ¬F , respectively. We suppose
that x2 and y2 is the conflicting mass to be redistributed to F
and ¬F , respectively, to calculate the second partial conflicting
mass m2(F )m1(¬F ). We have

x2

m2(F )
=

y2

m1(¬F )
=

x2 + y2

(0.76) + (0.40)
= 0.2621.

Thus, x2 = 0.1992, y2 = 0.1048.
We can obtain two results of the redistribution for each

corresponding set F and ¬F , respectively. We then obtain the
result of the PCR5 rule based on the (6) as follows:

mPCR5(F ) = m12(F ) + x1 + x2 = 0.7378

mPCR5(¬F ) = m12(¬F ) + y1 + y2 = 0.2547

mPCR5(F ∪ ¬F ) = m12(F ∪ ¬F ) + 0 = 0.0075.

Finally, we calculate the belief and uncertainty level of the
F situation with two combination rules using (1), (2), and (13).
We then calculate the maximum of pignistic probability with a
decision rule using (7) and (8), i.e.,

Bel ({F}) = mDS ({F}) = 0.7838
Pl ({F}) = mDS ({F}) + mDS ({F,¬F})

= 0.7961
Pl ({F}) − Bel ({F}) = mDS ({F,¬F}) = 0.0123

Bel ({F}) = mPCR5 ({F}) = 0.7378
Pl ({F}) = mPCR5 ({F})

+ mPCR5 ({F,¬F}) = 0.7453
Pl ({F}) − Bel ({F}) = mPCR5 ({F,¬F}) = 0.0075

PDS ({F}) = mDS ({F}) +
1
2
mDS ({F,¬F})

= 0.78995
PPCR5 ({F}) = mPCR5 ({F})

+
1
2
mPCR5 ({F,¬F}) = 0.74155.

In this example, we simply know that the mass of ignorance
committed by the PCR5 rule (mPCR5(F ∪ ¬F ) = 0.0075) is
less than that of Dempster’s rule (mDS(F ∪ ¬F ) = 0.0123),
because Dempster’s combination rule takes the total conflicting
mass and then redistributes it to all nonempty sets, even those
not involved in the conflict. However, when we compare the
confidence level of the two cases, the maximum of pignistic
probability of the PCR5 rule (PPCR5({F}) = 0.74155) is less
than that of Dempster’s rule (PDS({F}) = 0.78995), because
the PCR5 rule redistributes the partial conflicting mass to both
positive and negative results of mass distributions concurrently.
Thus, in the next section, we analyze the reason that the DSmT
approach based on PCR5 rule is better than the DST approach
based on Dempster’s rule, even if the confidence level of the
DST approach is higher than that of the DSmT approach.

TABLE III
EXAMPLES OF THE DEGREES OF THE BELIEF OR PROBABILITY FOR AN

F SITUATION BASED ON THE NUMBERS OF ACTIVATED SENSORS

VI. COMPARISON AND ANALYSIS

First, we compare the belief or probability levels of three
cases: (1) BNs, (2) DST, and (3) DSmT based on the SEN.
Second, the uncertainty levels of two cases: (1) DST and
(2) DSmT is compared by applying three methods: 1) defined
static weighting factors, 2) different static weighting factors,
and 3) different discounting rates into two fusion processes.
Finally, we compare the uncertainty levels of two cases:
(1) DST and (2) DSmT with combining other algorithms such
as the TBF having different thresholds.

A. Belief Levels of Three Cases: BNS, DST, and DSMT

We assume that Θ={Sl, F} be the frame made of only
two hypotheses to compare DSmT with BNs and DST. In this
case, the probability theory (i.e., BNs) and the DST deal, under
the assumptions on exclusivity and exhaustivity of hypotheses,
with basic probability assignments (BPA) m(.)∈ [0, 1] such that
m(Sl) + m(F ) = 1 and m(Sl) + m(F ) + m(Sl ∪ F ) = 1,
respectively. DSmT deals, under only assumption on exhaus-
tivity of hypotheses, with the GBBA m(.) ∈ [0, 1] such that
m(Sl) + m(F ) + m(Sl ∪ F )+m(Sl ∩ F )=1. However, we
use the same underlying model [Shafer’s model (M0(Θ))] [26],
which reduces the DΘ into the 2Θ without loss of generality by
assuming exclusivity between elements of the Θ, for the sake of
comparison among BNs, DST and DSmT. We assume that the
numbers of activated sensors are increased based on the time
progress. The “F ” situation of the patient is calculated based
on the time progress and the numbers of activated sensors.

Table III and Fig. 6 show the results of the confidence levels
based on time progress. According to Table III, the degrees
of the belief or probability level for the “F ” situation of three
cases are increased based on the numbers of activated sensors.
When small numbers of sensors are activated, the degrees of
probability level of BNs are higher than those of others. The
reason is that BNs do not consider the uncertainty level of
two different evidences. When four more sensors are activated,
the degrees of pignistic probability level of DST are higher
than those of others. The reason is that DST do not consider
the conflicting mass, which increases the uncertainty level
in evidential networks, of two different evidences. Based on
the results of Table III and Fig. 6, the confidence level of
DST is higher than others in the emergency situation of the
patient when medical body sensors are activated. However, the
evidential fusion based on DST has more various conflicting
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Fig. 6. Example of the belief or probability levels of three cases based on the
time progress (increased activated sensors).

Fig. 7. Uncertainty levels of two cases based on the numbers of activated
sensors and the aggregation of activated sensors.

mass in the uncertainty level compared to the DSmT approach
as shown in Fig. 7. We need to reduce the conflicting mass
in uncertainty level to achieve correct decision making for the
situation of the patient.

In addition, according to Fig. 6, the Bel of (A) (i.e., Ps and
Rs) is bigger than that of (B) (i.e., Ls, Ms, and Bps) even if
the numbers of activated sensors of (A) is smaller than that of
(B), since the applied weighting factors of (A) are bigger than
those of (B). This shows the importance of the method to define
a static weighting factors for each context attribute in evidential
networks.

B. Uncertainty Levels of Two Cases: DST and DSmT

We calculate the uncertainty levels (ignorance) of two cases:
(1) DST and (2) DSmT, which are used for calculating the “F ”
situation of the patient. We cannot calculate the uncertainty
level using BNs, since BNs, which assume equality between
the implication and the conditional belief [23], cannot support
a certain degree α which takes a value from the interval [0, 1].

TABLE IV
APPLIED DIFFERENT STATIC WEIGHTING FACTORS

Fig. 8. Uncertainty levels of two cases based on different static weighting
factors depending on the decrease of weights on Ps and Rs.

1) Comparison With the Defined Static Weighting Factors:
We apply the defined static weighting factors to each context
attribute, as shown in Fig. 5. The uncertainty levels of two cases
based on the numbers of activated sensors are shown in Fig. 7.
The degrees of uncertainty level of DSmT have constant values
(i.e., 0.0075), because the PCR5 rule redistributes the total
conflicting mass as equal to zero within the DSmT framework.
However, the degrees of uncertainty level of DST have different
values, depending on the aggregation of activated sensors,
because Dempster’s rule takes the total conflicting mass and
redistributes it to all nonempty sets within the DST framework,
even those not involved in the conflict. As shown in Fig. 7,
the degrees of uncertainty level of DSmT are lower than those
of DST at any time. Hence, the DSmT approach with defined
static weighting factors gets better performance than the DST
approach to reduce the conflicting mass in uncertain contextual
information of the patient.

2) Comparison With Different Static Weighting Factors: We
apply different weights to each context attribute, as shown in
Table IV, to compare the uncertainty levels of two cases—DST
and DSmT—based on different weighting factors. In this case,
we calculate four situations: 1) Bts and Rs are not activated;
2) Ls and Bps are not activated; 3) only Bts is not activated;
and 4) all sensors are activated.

Fig. 8 shows the uncertainty levels of two cases based on
different weighting factors. As shown in Fig. 8, the uncertainty
levels of DSmT have the same degrees for all cases, although
the uncertainty levels of DST have different degrees, depending
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Fig. 9. Uncertainty levels of two cases based on different error rates r,
depending on the increase in error rates r on Ps and Rs.

on the four situations. In addition, the degrees of uncertainty
level of DSmT are lower than those of DST. Only when all
sensors are activated will the degrees of uncertainty level of
DSmT be equal to those of DST. It means that the evidential
fusion based on DSmT shows a constant uncertainty level,
whether a sensor reading error may happen or whether an
emergency situation may progress, by redistributing the total
conflicting mass only into the sets involved in the conflict and
proportionally to their masses. Hence, the DSmT approach with
different static weighting factors also shows better performance
than the DST approach for reducing the uncertainty level of
contextual information in the progress of F situation.

3) Comparison With Different Error Rates r: We apply
different r, which are related to sensor’s credibility, into Ps and
Rs to calculate the uncertainty levels of two cases. Reducing
the r on each sensor is an important factor to obtain the relia-
bility of contextual information of the patient. We calculate four
situations: 1) Bts and Bps are not activated; 2) Ps and Bts are
not activated; 3) only Bps is not activated; and 4) all sensors
are activated. We apply the static weighting factors to each
context attribute as equal to the used values in Fig. 5. Depending
on different r on Ps and Rs, the two cases show different
degrees of uncertainty levels, as shown in Fig. 9. The degrees
of uncertainty levels of these two cases are increased based on
the increase of the r as expected. In this case, the uncertainty
levels of DSmT have same degrees for all cases, although those
of DST have different degrees for the four situations. Moreover,
the degrees of uncertainty level of DSmT are lower than those
of DST. This result also shows that the DSmT approach gets
the better performance than the DST approach for reducing the
uncertainty level of contextual information in the progress of an
F situation.

C. Uncertainty Levels of Two Cases With the TBF

After performing SEFP within evidential networks, we apply
a TBF using (9) and (14)–(16) to compare the two cases. We
assume that the predefined threshold C for the conflict value
CF is equal to zero. We consider that the degree of a belief

Fig. 10. Uncertainty levels of two cases when considering a TBF.

Fig. 11. Confidence (pignistic probability) levels of the DSmT approach when
considering different TBF thresholds.

is greater than 0.5 (BelF > 0.5). As shown in Fig. 10, we
can reduce the degrees of uncertainty levels of the two cases
when we apply a TBF. In this case, the DSmT approach still
has a better performance than the DST approach for reducing
the uncertainty level of contextual information. In addition,
we compare the confidence (pignistic probability) levels of the
DSmT approach by applying different TBF thresholds such as
C = 0, C < 0.2, and C < 0.4 into the BelF > 0.7 case. De-
pending on the selected thresholds, a conflict value CF between
prediction and measurement requires different model changes.
As shown in Fig. 11, the confidence levels have different de-
grees based on these model evolutions. In this case, we can get
a higher confidence level when we apply the C = 0 threshold
compared to others. It means that we can get higher confidence
levels when we adapt more model evolution at each time stamp.
Finally, a context-reasoning method using the SEFP with the
PCR5 rule and the TBF within an evidential network improves
the confidence level by reducing the conflicting information in
uncertainty levels of contextual information of the patient.
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VII. CONCLUSION

To reduce the degrees of uncertainty in sensed data and in
generated contexts, we have utilized SEFP with the PCR5 rule
and the TBF as a context-reasoning method. We have also
applied a GPT to understand uncertainty analysis in decision
making. Finally, we analyze the evidential fusion approach by
adapting different static weighting factors, discounting rates,
and belief filter thresholds and then compare it with the DST ap-
proach. According to the results of our simulations, the DSmT
approach is better than the DST approach. In the future, we
will improve the quality of a context by considering dynamic
weighting factors, because correctly designing the quality of
a context is an important factor for improving the contextual
information of the patient.
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