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Abstract—A novel content-based heterogeneous information
retrieval framework, particularly well suited to browse medical
databases and support new generation computer aided diagnosis
(CADx) systems, is presented in this paper. It was designed to
retrieve possibly incomplete documents, consisting of several
images and semantic information, from a database; more complex
data types such as videos can also be included in the framework.
The proposed retrieval method relies on image processing, in
order to characterize each individual image in a document by
their digital content, and information fusion. Once the available
images in a query document are characterized, a degree of match,
between the query document and each reference document stored
in the database, is defined for each attribute (an image feature
or a metadata). A Bayesian network is used to recover missing
information if need be. Finally, two novel information fusion
methods are proposed to combine these degrees of match, in order
to rank the reference documents by decreasing relevance for the
query. In the first method, the degrees of match are fused by the
Bayesian network itself. In the second method, they are fused
by the Dezert–Smarandache theory: the second approach lets us
model our confidence in each source of information (i.e., each
attribute) and take it into account in the fusion process for a better
retrieval performance. The proposed methods were applied to two
heterogeneous medical databases, a diabetic retinopathy database
and a mammography screening database, for computer aided
diagnosis. Precisions at five of 0.809 0.158 and 0.821 0.177,
respectively, were obtained for these two databases, which is very
promising.

Index Terms—Diabetic retinopathy, heterogeneous information
retrieval, information fusion, mammography, medical databases.
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I. INTRODUCTION

T WO main tasks in computer aided diagnosis (CADx)
using medical images are extraction of relevant infor-

mation from images and combination of the extracted features
with other sources of information to automatically or semi-au-
tomatically generate a reliable diagnosis. One promising way
to achieve the second goal is to take advantage of the growing
number of digital medical databases either for heterogeneous
data mining, i.e., for extracting new knowledge, or for het-
erogeneous information retrieval, i.e., for finding similar
heterogeneous medical records (e.g., consisting of digital im-
ages and metadata). This paper presents a generic solution to
use digital medical databases for heterogeneous information
retrieval, and solve CADx problems using case-based reasoning
(CBR) [1].

CBR was introduced in the early 1980s as a new decision
support tool. It relies on the idea that analogous problems
have similar solutions. In CBR, interpreting a new situation
revolves around the retrieval of relevant documents in a case
database. The knowledge of medical experts is a mixture of
textbook knowledge and experience through real life clinical
cases, so the assumption that analogous problems have similar
solutions makes sense to them. This is the reason why there is
a growing interest in CBR for the development of medical de-
cision support systems [2]. Medical CBR systems are intended
to be used as follows: should a physician be doubtful about
his/her diagnosis, he/she can send the available data about
the patient to the system; the system selects and displays the
most similar documents, along with their associated medical
interpretations, which may help him/her confirm or invalidate
his/her diagnosis by analogy. Therefore, the purpose of such
a system is not to replace physicians’ diagnosis, but rather to
aid their diagnosis. Medical documents often consist of digital
information such as images and symbolic information such
as clinical annotations. In the case of diabetic retinopathy, for
instance, physicians analyze heterogeneous series of images
together with contextual information such as the age, sex and
medical history of the patient. Moreover, medical information is
sometimes incomplete and uncertain, two problems that require
a particular attention. As a consequence, original CBR systems,
designed to process simple documents such as homogeneous
and comprehensive attribute vectors, are clearly unsuited to
complex CADx applications. On one hand, some CBR systems
have been designed to manage symbolic information [3]. On
the other hand, some others, based on content-based image
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retrieval [4], have been designed to manage digital images
[5]. However, few attempts have been made to merge the two
kinds of approaches. We consider in this paper a larger class of
problems: CBR in heterogeneous databases.

To retrieve heterogeneous information, some simple ap-
proaches, based on early fusion (i.e., attributes are fused in
feature space) [6], [7] or late fusion (i.e., attributes are fused
in semantic space) [8]–[10] have been presented in the litera-
ture. A few application-specific approaches [11]–[15], as well
as a generic retrieval system, based on dissimilarity spaces
and relevance feedback [16], have also been presented. We
introduce in this paper a novel generic approach that does not
require relevance feedback from the user. The proposed system
is able to manage incomplete information and the aggregation
of heterogeneous attributes: symbolic and multidimensional
digital information (we focus on digital images, but the same
principle can be applied to any -dimensional signals). The
proposed approach is based on a Bayesian network and the
Dezert–Smarandache theory (DSmT) [17]. Bayesian networks
have been used previously in retrieval systems, either for key-
word based retrieval [18], [19] or for content-based image or
video retrieval [20], [21]. The Dezert–Smarandache theory is
more and more widely used in remote sensing applications [17],
however, to our knowledge, this is its first medical application.
In our approach, a Bayesian network is used to model the rela-
tionships between the different attributes (the extracted features
of each digital image and each contextual information field): we
associate each attribute with a variable in the Bayesian network.
It lets us compare incomplete documents: the Bayesian net-
work is used to estimate the probability of unknown variables
(associated with missing attributes) knowing the value of other
variables (associated with available attributes). Information
coming from each attribute is then used to derive an estima-
tion of the degree of match between a query document and a
reference document in the database. Then, these estimations
are fused; two fusion operators are introduced in this paper for
this purpose. The first fusion operator is incorporated in the
Bayesian network: the computation of the degree of match,
with respect to a given attribute, relies on the design of condi-
tional probabilities relating this attribute to the overall degree
of match. An evolution of this fusion operator that models our
confidence in each source of information (i.e., each attribute) is
introduced. It is based on the Dezert–Smarandache theory. In
order to model our confidence in each source of information,
within this second fusion operator, an uncertainty component is
included in the belief mass function characterizing the evidence
coming from this source of information.

The main advantage of the proposed approach, over stan-
dard feature selection/feature classification approaches, is that
a retrieval model is trained separately for each attribute. This
is useful to process incomplete documents: in the proposed ap-
proach, we simply combine the models associated with all avail-
able attributes; as a comparison, a standard classifier relies on
feature combinations, and therefore may become invalid when
input feature vectors are incomplete. Also, because each at-
tribute is processed separately, the curse of dimensionality is
avoided. Therefore, it is not necessary to select the most rele-
vant features: instead, we simply weight each feature by a con-
fidence measure.

Fig. 1. Examples of Bayesian networks. (a) A chain. (b) A polytree, i.e., a
network in which there is at most one (undirected) path between two nodes. (c)
A network containing a cycle: ������� ����.

The paper is organized as follows. Section II presents the pro-
posed Bayesian network based retrieval. Section III presents the
Bayesian network and Dezert–Smarandache theory based re-
trieval. These methods are applied in Section IV to CADx in
two heterogeneous databases: a diabetic retinopathy database
and a mammography database. We end with a discussion and a
conclusion in Section V.

II. BAYESIAN NETWORK BASED RETRIEVAL

A. Description of Bayesian Networks

A Bayesian network [22] is a probabilistic graphical model
that represents a set of variables and their probabilistic depen-
dencies. It is a directed acyclic graph whose nodes represent
variables, and whose edges encode conditional independencies
between the variables. Examples of Bayesian networks are
given in Fig. 1.

In the example of Fig. 1(b), the edge from the parent node
to its child node indicates that variable has a direct influ-
ence on variable . Each edge in the graph is associated with
a conditional probability matrix expressing the probability of a
child variable given one of its parent variables. For instance, if

and , then is assigned
the following (3 2) conditional probability matrix

(1)
A directed acyclic graph is a Bayesian Network relative
to a set of variables if the joint distribution

can be expressed as in

(2)

where is the set of nodes such that is in
the graph . Because a Bayesian network can
completely model the variables and their relationships, it can be
used to answer queries about them. Typically, it is used to esti-
mate unknown probabilities for a subset of variables when other
variables (the evidence variables) are observed. This process
of computing the posterior distribution of variables, given ev-
idence, is called probabilistic inference. In Bayesian networks
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containing cycles, exact inference is a NP-hard problem. Ap-
proximate inference algorithms have been proposed, but their
accuracies depend on the network’s structure; therefore, they
are not general. By transforming the network into a cycle-free
hypergraph, and performing inference in this hypergraph, Lau-
ritzen and Spiegelhalter proposed an exact inference algorithm
with relatively low complexity [23]; this algorithm was used in
the proposed system.

B. Learning a Bayesian Network From Data

A Bayesian network is defined by a structure and the condi-
tional probability of each node given its parents in that structure
(or its prior probability if it does not have any parent). These pa-
rameters can be learned automatically from data. Defining the
structure consists in finding pairs of nodes directly de-
pendent, i.e., such that:

• and are not independent ;
• there is no node set such that and are independent

given .
Independence and conditional independence can be assessed by
mutual information [see (3)] and conditional mutual informa-
tion [see (4)], respectively

(3)

(4)

Two nodes are independent (resp. conditionally independent)
if mutual information (resp. conditional mutual information) is
smaller than a given threshold , . Ideally, should be
equal to 0. However, in the presence of noise, some meaningless
edges (links) can appear. These edges can also unnecessarily
increase the computation time. To avoid this, in this study, was
chosen in advance to be equal to 0.1. This number is independent
of dataset cardinality [24].

The structure of the Bayesian network, as well as edge orien-
tation, was obtained by Cheng’s algorithm [24]. This algorithm
was chosen for its complexity: complexity is polynomial in the
number of variables, as opposed to exponential in competing al-
gorithms.

C. Including Images in a Bayesian Network

Contextual information are included as usual in a Bayesian
network: a variable with a finite set of states, one for each pos-
sible attribute value, is defined for each field.

To include images in a Bayesian network, we first define a
variable for each image in the sequence. For each “image vari-
able,” we follow the usual steps of Content-Based Image Re-
trieval (CBIR) [4]: 1) building a signature for each image (i.e.,
extracting a feature vector summarizing their digital content),
and 2) defining a distance measure between two signatures (see
Section II-C-1). Thus, measuring the distance between two im-
ages comes down to measuring the distance between two sig-
natures. Similarly, in a Bayesian network, defining states for an
“image variable” comes down to defining states for the signa-
ture of the corresponding images. To this aim, similar image
signatures are clustered, as described below, and each cluster is

associated with a state. Thanks to this process, image signatures
can be included in a Bayesian network like any other variable.

1) Image Signature and Distance Measure: In previous
works on CBIR, we proposed to extract a signature for images
from their wavelet transform [25]. These signatures model the
distribution of the wavelet coefficients in each subband of the
decomposition; as a consequence they provide a multiscale
description of images. To characterize the wavelet coeffi-
cient distribution in a given subband, Wouwer’s work was
applied [26]: Wouwer has shown that this distribution can be
modeled by a generalized Gaussian function. The maximum
likelihood estimators of the wavelet coefficient distribution
in each subband are used as a signature. These estimators
can be computed directly from wavelet-based compressed
images (such as JPEG-2000 compressed images), which can
be useful when a large number of images has to be processed.
A simplified version of Do’s generalized Gaussian parameter
estimation method [25], [27] is proposed in Appendix A to
reduce computation times. Any wavelet basis can be used to
decompose images. However, the effectiveness of the extracted
signatures largely depends on the choice of this basis. For this
reason, we proposed to search for an optimal wavelet basis [25]
within the lifting scheme framework, which is implemented
in the compression standards. To compare two signatures, Do
proposed the use of the Kullback–Leibler divergence between
wavelet coefficient distributions and in two subbands [27]

(5)

where and are the densities of and , respectively. A sym-
metric version of the Kullback–Leibler divergence was used,
since clustering algorithms require (symmetric) distance mea-
sures

(6)

Finally, the distance between two images is defined as a
weighted sum of these distances over the subbands, noted

; weights are tuned by a genetic algorithm to maximize
retrieval performance on the training set [25]. The ability to
select a weight vector and a wavelet basis makes this image
representation highly tunable. We have shown in previous
works the superiority of the proposed image signature, in
terms of retrieval performance, over several well-known image
signatures [25].

2) Signature Clustering: In order to define several states for
an “image variable,” similar images are clustered with an un-
supervised classification algorithm, thanks to the image signa-
tures and the associated distance measure above. Any algorithm
can be used, provided that the distance measure can be speci-
fied. We chose the well-known fuzzy C-means algorithm (FCM)
[28] and replaced the Euclidean distance by described
above. In this algorithm, each document is assigned to each
cluster with a fuzzy membership , ,
such that , which can be interpreted as a proba-
bility. Finding the right number of clusters is generally a difficult
problem. However, when each sample has been assigned a class
label, mutual information between clusters and class labels can
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Fig. 2. Bayesian network based retrieval. Solid-lined arrows mean “leads to”
or “is followed by” and dashed-lined arrows mean “is used by.”

be used to determine the optimal number of clusters [29] [see
(7)]

(7)

where are the class labels, is the joint prob-
ability distribution function of the class and cluster labels,
and are the marginal probability distribution functions.
Other continuous variables can be discretized similarly: the age
of a person, 1-D signals, videos, etc.

D. System Design

Let be a query document and be the number of at-
tributes.

Definition: A document is said to be relevant for if
and belong to the same class.

To assess the relevance of each reference document in a data-
base for , we define a Bayesian network with the following
variables:

• a set of variables , where represents
the th attribute of ;

• a Boolean variable "
is not relevant for " .

The design of the system is described hereafter and illustrated
in Fig. 2. To build the network, the first step is to learn the dif-
ferent relationships between the attributes .
So, an intermediate network is built from data, using Cheng’s
algorithm (see Section II-B). In that purpose, the studied data-
base is divided into a training dataset and a test dataset. Cheng’s
algorithm is applied to the training dataset. In our experiments,
the query document belongs to the test dataset and belongs
to the training dataset. To build this Bayesian network, a finite

Fig. 3. Retrieval Bayesian Network (built for the database presented in
Section IV-A). In the example of (b), attributes � � � � � � � , � , � , � ,
� , � , � , � , � , � are available for the query document � , so
the associated nodes are then connected to node �. (a) Intermediate network.
(b) Query-specific network.

number of states is defined for each variable , .
To learn the relationships between these variables, we use the
membership degree of any document in the training dataset to
each state of each variable , noted . If is a nom-
inal variable, is boolean; for instance, if is a male then

`` ” `` ” , and `` '' `` '' . If is
a continuous variable (such as an image-based feature),
is the fuzzy membership of to each cluster (see
Section II-C-2). An example of intermediate network is given
in Fig. 3(a).

is then integrated in the network. For retrieval, the attributes
of are observable evidences for , as a consequence the as-
sociated variables should be descendants of . In the retrieval
network, the probabilistic dependences between and each
variable depend on . In fact, specifies which attributes
should be found in the retrieved documents in order to meet the
user’s needs. So, when the th attribute of is available, we
connect the two nodes and and we estimate the associated
conditional probability matrix according to
[see Fig. 3(b)]. The index denotes that the probability depends
on . A query-specific network is obtained: its structure de-
pends on which attributes are available for the query document
and the conditional probability matrices depend on the value
taken for these available attributes by the query document. This
network is used to assess the relevance of any reference docu-
ment for .

E. Computing the Conditional Probabilities

To compute , we first estimate
: the probability that a reference document , with full mem-

bership to the state of attribute , is relevant.
can then be computed thanks to Bayes’ theorem [see

(8)]. The prior probability is required; it can be estimated
by the probability that two documents belong to the same class,
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i.e., the probability that both documents belong to class 1 or that
both documents belong to class 2, etc., hence (9)

(8)

(9)

where are the class labels (as a consequence the
prior probability is actually independent of ).

1) Objectives: We want to define such that
the posterior probability is as close to 1 as possible if

and belong to the same class, and as close to 0 as possible
otherwise (note that the class label of is unknown). We de-
fine the semantic similarity between documents and , with
respect to , as follows:

(10)

where is the correlation between two states and of
, regarding the class of the documents at these states.
2) Correlation Between Two States of a Variable: To com-

pute , we first compute the mean membership (resp.
) of documents in a given class to the state (resp.

) ( belongs to the training dataset):

(11)

where if is in class , otherwise, and
is a normalizing factor chosen to meet the second relation.
is given by

(12)

3) Degree of Match Between and With Respect to
: When computing the posterior probability ,

the Bayesian inference algorithm fuses probabilities
coming from each node connected to

[see Fig. 3(b)]. In the remainder of this paper, probability
is referred to as the degree

of match between and with respect to attribute . This
degree of match can be rewritten as follows:

(13)

where , the membership degree of to the state of ,
is known or computed by the Bayesian network.

is chosen proportional to . It im-
plies that is proportional to the semantic similarity
between and (13). As a consequence, the reference doc-
uments maximizing the semantic similarity with will max-
imize , which was our objective. Computation details
for are given in Appendix B.

Fig. 4. Assessing the relevance of a reference document � for the query by the
proposed methods. In this example, attributes � , � , � , � , � , � ,
� and� are available for � . Evidence nodes are colored in gray and target
nodes are brightly encircled. In (b), the fusion system is colored in gray � �. (a)
Bayesian network based method. (b) Bayesian network + DSmT based method.

F. Retrieval Process

The different reference documents in the database are then
processed sequentially. To process a document , every avail-
able attribute for is processed as evidence and Lauritzen and
Spiegelhalter’s inference algorithm is used to compute the pos-
terior probability of each variable, the posterior probability of

, , in particular [see Fig. 4(a)]. The reference docu-
ments in the database are then ranked in decreasing order of the
computed posterior probability .

III. BAYESIAN NETWORK AND DEZERT–SMARANDACHE

BASED RETRIEVAL

A. Description of the Dezert–Smarandache Theory

The Dezert–Smarandache Theory (DSmT) of plausible and
paradoxical reasoning, proposed in recent years [17], lets us
combine any types of independent sources of information rep-
resented in term of belief functions. It generalizes the theory of
belief functions (Dempster–Shafer Theory—DST) [30], which
itself generalizes the Bayesian theory, used in the system above.
DSmT is mainly focused on the fusion of uncertain, highly con-
flicting and imprecise sources of evidence.

Let be a set of hypotheses under consider-
ation for the fusion problem; is called the frame of discern-
ment. For our problem, . In Bayesian theory, a
probability is assigned to each element of the frame,
such that . More generally, in DST, a belief
mass is assigned to each element of the power set

, i.e., the set of all composite propo-
sitions built from elements of with operators, such that
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and . Belief masses let us ex-
press our uncertainty; it is possible for instance to define con-
fidence intervals on probabilities: depending on external cir-
cumstances, the probability of can range from and

. DSmT takes one step further: a (gener-
alized) belief mass is assigned to each element of the
hyper-power set , i.e., the set
of all composite propositions built from elements of with
and operators, such that and .

The belief mass functions must be first specified by the
user for each source of information, ( functions
used in our system are described below, in Paragraph III-C).
Then, mass functions are fused into the global mass function

, according to a given rule of combination. Another differ-
ence between DST and DSmT comes from the underlying rules
of combinations. Several rules, designed to better manage con-
flicts between sources, were proposed in DSmT, including the
hybrid rule of combination [17] and the proportional conflict
redistribution (PCR) rules [31]. It is possible to introduce con-
straints in the model [17]: we can specify pairs of incompatible
hypotheses , i.e., each subset of must have a
null mass, noted .

Once the fused mass function has been computed, we
can compute the belief (credibility) and the plausibility of each
hypothesis (or any other element of ) as follows:

(14)

(15)

Belief and plausibility are respectively pessimistic and opti-
mistic. Pignistic probability [32], a possible compromise, is
used instead (see below, in Paragraph III-D); other probabilistic
transformations are available [33].

B. Link With Bayesian Network Based Retrieval

Our motivation for using the theory of belief functions,
instead of the Bayesian theory, is that the former lets us model
our confidence in each source of information, instead of taking
each piece of information at face value. This property is partic-
ularly attractive for a medical decision support system where
heterogeneous sources of information, with varying reliability,
are combined. Because its fusion operators better manage
conflicting sources of information, a common occurrence when
these sources are unreliable, DSmT was used instead of the
original theory of belief functions.

In the Bayesian network based method (see Section II), the
relevance of a reference document for the query, according
to a given attribute , has been estimated through the de-
sign of conditional probabilities . The
sources of information (represented by the network variables

, ) were then fused by the Bayesian network
inference algorithm [see Fig. 3(b)] to compute the posterior
probability of , , for a document in the database.
We can translate this Bayesian fusion problem into the frame-
work of the belief mass theory. Let be the frame of

discernment. For each source , we defined (13) a degree
of match between and the query , which may
be viewed as the belief mass assigned to hypothesis
and consequently was assigned to .

In that first approach, we did not model our confidence in the
estimation of the relevance provided by each source of evidence
(through the design of conditional probabilities). And poor esti-
mations of the relevance provided by some sources might mis-
lead the computation of the fused estimation. So we would like
to give more importance in the fusion process to the trusted
sources of evidence. We propose to use DSmT to model our
confidence in each source of evidence, as explained below.

C. System Design

To extend the previous method in the DSmT framework, we
assign a mass not only to and , but to each element in

. Assigning a mass to
is meaningless, so we only assign a mass to elements in

(it is actually Shafer’s model
[30]).

To compute the belief masses for a given source of infor-
mation , we defined a test on the degree of match

is true if , , and false
otherwise. The mass functions are then assigned according to

.
• if is true:

— (the sensi-
tivity of )

—
—

• else
— (the

specificity of )
—
— .

The sensitivity (resp. the specificity) represents the degree
of confidence in a positive (resp. negative) answer to test

is assigned the degree of uncertainty. The
sensitivity of , for a given threshold , is defined as the
percentage of pairs of training documents from the
same class such that is true. Similarly, the specificity
of is defined as the percentage of pairs of training documents

from different classes such that is false. Test
is relevant if it is both sensitive and specific. As increases,

sensitivity increases and specificity decreases. So, we set as
the intersection of the two curves “sensitivity according to ”
and “specificity according to .” A binary search is used to
find the optimal .

D. Retrieval Process

To process a reference document , every available attribute
for is processed as evidence and Lauritzen and Spiegelhalter’s
inference algorithm is used to estimate , .
If the th attribute of is available, the degree of match

is computed according to [see (13)] and
the belief masses are computed according to test .
The sources available for are then fused. Usual rules of
combination have a time complexity exponential in , which
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Fig. 5. Bayesian network and Dezert-Smarandache based retrieval.

might be a limitation. So we proposed a rule of combination
for two-hypotheses problems ( and in our application),
adapted from the PCR rules, with a time complexity polyno-
mial in [34]. Once the sources available for are fused
by the proposed rule of combination, the pignistic probability

is computed by the following:

(16)

The process is illustrated in Fig. 4(b) and Fig. 5. The reference
documents are then ranked in decreasing order of .

IV. APPLICATION TO MEDICAL IMAGE DATABASES

The proposed method has been applied to CADx on two
heterogeneous databases. First, it has been applied to diabetic
retinopathy severity assessment on a dataset (DRD) built at the
Inserm U650 laboratory, in collaboration with ophthalmologists
of Brest University Hospital. Then, it has been applied to breast
cancer screening on a public access database (DDSM).

A. Diabetic Retinopathy Database

The diabetic retinopathy database contains retinal images of
diabetic patients, with associated anonymized information on
the pathology. Diabetes is a metabolic disorder characterized
by sustained inappropriately high blood sugar levels. This pro-
gressively affects blood vessels in many organs, which may lead
to serious renal, cardiovascular, cerebral, and also retinal com-
plications. The latter case, namely diabetic retinopathy, can lead
to blindness. The database consists of 67 patient files containing
1112 photographs altogether. Images have a definition of 1280
pixels/line for 1008 lines/image. They are lossless compressed
images. Patients have been recruited at Brest University Hos-
pital (France) since June 2003 and images were acquired by ex-
perts using a Topcon Retinal Digital Camera (TRC-50IA) con-
nected to a computer. An image series is given in Fig. 6.

Fig. 6. Photograph sequence of a patient eye. Images (a)–(c) are photographs
obtained with different color filters. Images (d)–(j) constitute a temporal an-
giographic series: a contrast agent (fluorescein) is injected and photographs are
taken at different stages [early (d), intermediate (e)–(i), late (j)]. At the interme-
diate stage, photographs from the periphery of the retina are available.

The contextual information available is the age and sex of the
patient, as well as structured medical information (see Table I).
Patients records consist of at most 10 images per eye (see Fig. 6)
and 13 contextual attributes; 12.1% of these images and 40.5%
of these contextual attribute values are missing. The disease
severity level, according to ICDRS classification [35], was as-
sessed by a single expert for all 67 patients: because of intra-ob-
server variability, the reference standard is imperfect. The dis-
tribution of the disease severity among the above-mentioned 67
patients is given in Table II.

B. Digital Database for Screening Mammography (DDSM)

The DDSM project [36], involving the Massachusetts Gen-
eral Hospital, the University of South Florida and the Sandia
National laboratories, has built a mammographic image data-
base for research on breast cancer screening. It consists of 2277
patient files. Each of them includes two images of each breast,
associated with patient information (age at time of study, sub-
tlety rating for abnormalities, American College of Radiology
breast density rating and keyword description of abnormalities)
and image information (scanner, spatial resolution, etc.). The
following contextual attributes are used in this study:

• the age at time of study;
• the breast density rating.

Images have a varying definition, of about 2000 pixels/line for
5000 lines/image. An example of image sequence is given in
Fig. 7. There is no missing information in DDSM.

Each patient file has been graded by a physician. Patients are
then classified in three groups: normal, benign and cancer. The
distribution of grades among the patients is given in Table II.
The reference standard is also affected by intra- and inter-ob-
server variability in this dataset.

C. Objective of the System

Definition: Let be a query document, and
be its most similar documents within the training set. The
precision at for is the fraction of documents, among

, that belong to the same class as .
For each query document, we want to retrieve the most sim-

ilar reference documents in a given database. Satisfaction of the
user’s needs can thus be assessed by the precision at . The
average precision at measures how good a fusion method is
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TABLE I
STRUCTURED CONTEXTUAL INFORMATION FOR DIABETIC RETINOPATHY PATIENTS

TABLE II
PATIENT DISEASE SEVERITY DISTRIBUTION

Fig. 7. Mammographic image sequence of the same patient. (a) and (b) Two
views of the left breast. (c) and (d) Two views of the right one.

at combining feature-specific distance measures into a semanti-
cally meaningful distance measure.

D. Patient File Features

In those databases, each patient file consists of both digital
images and contextual information. Contextual attributes (13
in DRD, 2 in DDSM) are processed as-is in the CBR system.
Images need to be processed in order to extract relevant dig-
ital features. A possible solution is to segment these images
and extract domain specific information (such as the number
of lesions); for DRD, the number of automatically detected mi-
croaneurysms (the most frequent lesion of diabetic retinopathy)
[37] is used. However, this kind of approach requires expert
knowledge and a robust segmentation of images, which is not
always possible because of acquisition variability. So, an ad-
ditional solution to characterize images by their digital con-
tent, without segmenting images, is proposed: a feature vector

is extracted from the wavelet decomposition of the image [25].
An image signature is computed for each image field in a doc-
ument (4 in DDSM: RCC, RMLO, LCC, LMLO and 10 in
DRD); each image signature is associated with an attribute (see
Section II-C). In conclusion, there are 24 attributes in DRD and
six attributes in DDSM.

E. Training and Test Sets

Retrieval performance is assessed as follows. Both datasets
are randomly divided into five subsets of equal
size. Each subset , is used in turn as test set while
the remaining four subsets are used for training the retrieval
system. Note that the test set is completely independent from
the training process.

F. Results

The number of documents proposed by the system is typi-
cally set to . Precisions obtained with each fu-
sion method are reported in Table III. Because the cardinality
of each class is small in DRD, performance was expected to de-
crease as increases. For both databases, at , the average
precision is greater than 0.8; it means that, on average, more than
80% of the selected documents are relevant for a query. We can
see that, on DRD, the use of DSmT increases the average pre-
cision at by about 10%, but not on DDSM. This can be
explained by the fact that, on DRD, many sources of informa-
tion are contextual: less reliable similarity measures are derived
from these contextual sources (the sensitivity/specificity values
of the corresponding tests are lower), hence the interest of
DSmT for this database. To assess the performance of the pro-
posed fusion framework, independently of the underlying image
signatures (described in Section II-C-1), it was compared to an
early fusion [6] and a late fusion method [8] based on the same
image signatures. The results we obtained for these methods are
summarized in Table III.

The average computation time to retrieve the five closest doc-
uments for the second method is given in Table IV (computation
times are similar with the first method). Clearly, most of the time
is spent during the computation of image signatures. All experi-
ments were conducted using an AMD Athlon 64-bit based com-
puter running at 2 GHz.
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TABLE III
PRECISION OBTAINED WITH DIFFERENT METHODS

TABLE IV
COMPUTATION TIMES FOR THE DSMT BASED METHOD

Fig. 8. Robustness with respect to missing values. Note that documents are
returned at random when no attributes are available (0 on the x-axis).

To study the robustness of the method with respect to missing
values the following test was carried out.

• For each document in the database, 100 new documents
were generated as follows. Let be the number of at-
tributes available for , each new example was obtained
by removing a number of attribute values randomly se-
lected in .

• The precision at five obtained for these generated docu-
ments, with respect to the number of available attributes,
was plotted in Fig. 8.

Finally, for comparison purposes, the proposed system was
applied to abnormal (“benign” or “cancer”) versus ‘normal’
document classification.

• For each document in the database (1364 abnormal
and 695 normal), an abnormality index was defined;

is the percentage of abnormal documents among the
topmost results (if belongs to , then the results are
selected within the database minus ).

• The receiver-operating curve (ROC) [38] of was
plotted and the area under this curve, noted , was
computed.

An area under the ROC curve of , and
was obtained for , and , re-

spectively. In comparison, for the task of classifying regions of
interest of 512 512 pixels (489 malignant masses, 412 benign
masses, and 919 normal breasts), Mazurowski et al. obtained an
area under the ROC curve of using mutual
information [38].

V. DISCUSSION AND CONCLUSION

In this paper, we introduced two methods to include image se-
ries and their signatures, with contextual information, in a CBR
system. The first method uses a Bayesian network to model the
relationships between attributes. It allows us to manage missing
information, and to fuse several sources of information. In par-
ticular, a method to include image signatures in a Bayesian net-
work was proposed. In this first method, we modeled the rele-
vance of a reference document in the database for the query, ac-
cording to a given attribute , through the design of conditional
probabilities . The second method, based on the
Dezert–Smarandache theory, extends the first one by improving
the fusion operator: we modeled our confidence in each estima-
tion of the relevance through the design of belief mass functions.
These methods have been successfully applied to two medical
image databases. These methods are generic: they can be ex-
tended to databases containing sound, video, etc. The wavelet
transform based signature, presented in Section II-C, can be ap-
plied to any -dimensional digital signal, using its -dimen-
sional wavelet transform ( for sound, for video,
etc) [39]. Extending the proposed image signature to -dimen-
sional wavelet transforms is trivial: characterizing the distribu-
tion of wavelet coefficients simply implies iterating over rows,
columns, depth (or time), etc., instead of rows and columns for
a 2-D image (see Appendix A). The proposed methods are also
convenient in the sense that they do not need to be retrained each
time a new document is included in the database.

The precision at five obtained for DRD (0.809 0.158) is
particularly interesting, considering the few examples available,
the large number of missing values and the large number of
classes taken into account. On this database, the methods out-
perform usual methods by almost a factor of 2 in terms of preci-
sion at 5. The improvement is also noticeable on DDSM (0.821

0.177 compared to 0.714 0.193). The proposed retrieval
methods are fast: most of the computation time is spent during
the image processing steps. The code may be parallelized to de-
crease computation times further. Moreover, sufficient precision
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can be reached before all the attributes are provided by the user.
As a consequence, the user can stop formulating his query when
the returned results are satisfactory. On DRD for instance, a pre-
cision at five of 0.6 can be reached by providing less than 30%
of the attributes (see Fig. 8): with this precision, the majority of
the retrieved documents (3 out of 5) belong to the right class.
Table III shows that the difference, in terms of retrieval perfor-
mance, between single image retrieval [25] and heterogeneous
document retrieval, comes from the combination of image fea-
tures extracted from several images, more than the inclusion of
contextual attributes.

This study has three limitations. First, only one type of image
feature [25] has been included in the retrieval system (two for
DRD [25], [37]). In particular, the inclusion of application-spe-
cific image features will have to be validated on several medical
image databases. Second, the reference standards are affected by
inter- and intra- observer variability, further validation and ob-
server studies are needed. Finally, as it has been shown by Cheng
et al. the size of the dataset has an influence on the correctness
of the generated Bayesian networks. DRD, in particular, is small
compared to the datasets used to validate Bayesian network gen-
eration methods [24]. The limited size of the dataset may also
impact the performance on the test set, especially if is larger
than (or is in the order of) the number of cases belonging to some
of the classes within the dataset.

As a conclusion, using appropriate information fusion opera-
tors, heterogeneous case retrieval in medical digital databases is
a powerful tool to build reliable CADx systems. In future works,
we will try to improve retrieval performance further through the
use of relevance feedback [4] and through the inclusion of local-
ized image features. A web interface, that will permit relevance
feedback, is being developed to allow assessment of clinical use-
fulness by physicians.

APPENDIX A
FAST PARAMETER ESTIMATION FOR GENERALIZED

GAUSSIAN DISTRIBUTIONS

In Do’s parameter estimation method [27], the parameters of
the wavelet coefficient distribution in a subband

, namely and , are obtained
by iterating over all coefficients in this subband. For instance,
is obtained as follows:

(17)

where is an approximation of , which is iteratively refined
using the Newton–Raphson procedure [27]. The computation of

relies, for each wavelet coefficient, on multiple evaluations of
the logarithm and the digamma function, which implies slow
computations.

We propose to significantly reduce the number of such eval-
uations by applying Do’s estimation method, not directly to ,
but to a histogram of .

1) The standard deviation of is computed.
2) A -bins histogram of , restricted to the in-

terval, is computed (we used and —these

numbers were chosen to reduce the approximation error on
an independent dataset1).

3) Let be the number of coefficients assigned to the th
bin, and the centroid of that bin.

(18)

Equation (17) becomes

(19)

All other equations in [27] are modified similarly.
APPENDIX B

: COMPUTATION DETAILS

For each attribute , , we want
to be proportional to (see
Section II-E). In that purpose, we first determine

. Let . The
following constraints have to be satisfied:

(20)

(21)

(22)

where , , and are prior probabilities.
Injecting and in (21), we obtain

(23)

is then extracted from (23)

(24)

Once is computed,
can be computed [see (20)]. Other conditional probabilities are
deduced from the definition of .

If the most desirable state for attribute is
a rare state, it is possible that . Indeed, in constraint
(21), is multiplied by a small value

), the result of this product is small
and the other terms of the sum (with a value
smaller than by definition) might
be too small for the sum to reach . In that case, the con-
ditional probabilities should be changed as follows:

• we set ,
• each , , is multiplied by a constant

.
With this setup, constraint (21) becomes

(25)

1http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html.



118 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 30, NO. 1, JANUARY 2011

Finally, is extracted from (26) and conditional probabilities
from (27)

(26)

(27)

The inequality always
holds, as a consequence . Indeed

[according to con-
straint (21)], i.e., ; given
that , the following inequality holds:

.
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