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Abstract

Casimir’s celebrated result that the conducting plates of an unpowered rectangular cavity attract each
other with a pressure inversely proportional to the fourth power of their separation entails an unphysical
unbounded pressure as the plate separation goes to zero. An unphysical result isn’t surprising in light of
Casimir’s unphysical assumption of perfectly conducting plates that zero out electric fields regardless of
their frequency, which he sought to counteract via a physically foundationless discarding of the pressure
between the cavity plates when they are sufficiently widely separated. Casimir himself, however, empha-
sized that real metal plates are transparent to sufficiently high electromagnetic frequencies, which makes
removal of the frequency cutoff that he inserted unjustifiable at any stage of his calculation. Therefore
his physically groundless discarding of the large-separation pressure isn’t even needed, and when it is left
out a constant attractive pressure between the plates exists when their separation is substantially larger
than the cutoff wavelength. The intact cutoff furthermore implies zero pressure between the plates when
their separation is zero, and also that Casimir’s pressure is merely the subsidiary lowest-order correc-
tion term to the constant attractive pressure between the plates that is dominant when their separation
substantially exceeds the cutoff wavelength.

Introduction

H. B. G. Casimir’s groundbreaking 1948 presentation “On the attraction between two perfectly conducting
plates” [1] is a fascinating chronicle of his strivings to extract theoretical physics sense from the ostensi-
bly infinite electromagnetic-field ground-state energy 1

2

∑
h̄ω that is captured in standing waves within a

conducting rectangular cavity whose dimensions are L1 × L2 × a.

The method for “taming” this supposedly infinite energy which gained traction in Casimir’s mind was to
subtract from 1

2

∑
h̄ω at any arbitrary value of the separation a between the cavity’s two L1×L2 plates that

sum’s value at a sufficiently large value of that two-plate separation a. To be sure, the difference between
two ostensibly infinite energy sums is ill-defined, but Casimir’s plan to overcome that difficulty was to cut off
both of the infinite-valued sums that are involved in precisely the same way, and then to remove that cutoff
after the subtraction of the sum having a sufficiently large value of a from the sum having an arbitrary value
of a is safely accomplished . Casimir of course hoped that this recipe would produce a result which is both
finite and unique, and it turns out that for “reasonable” cutoffs Casimir’s hope is actually fulfilled—we shall
have much more to say below about how the criterion for a “reasonable” cutoff was entwined in Casimir’s
thinking with the response of real conducting metals to arbitrarily high-frequency electromagnetic fields,
and about how continuing to think along those physical lines makes it obvious that the ostensibly “infinite”
energy sums which bedeviled Casimir are wholly unphysical .

Before we delve further into that matter, however, it is important to underline a crucial elementary
consequence of Casimir’s above-described subtraction procedure which Casimir himself failed to notice: the
results obtained from his subtraction procedure obviously cannot possibly properly describe the ground-state
electromagnetic energy content of rectangular cavities which have sufficiently large values of the L1 × L2

plate separation distance a because part of that energy content has, of course, been subtracted away . As
a consequence, Casimir’s results are inherently incapable of describing the pressure between cavity plates
which are separated by a distance a that is sufficiently large. Indeed, Casimir’s pressure results necessarily
exhibit short-range character as a function of a that is a pure unphysical artifact .

To get a feeling for the artificiality which Casimir’s subtraction procedure injects into his results, we
note that his “subtracted energy” δE(L1, L2, a) for the “perfectly conducting” rectangular cavity whose
dimensions are L1 × L2 × a with L1 and L2 sufficiently large and a (ostensibly) arbitrary is [1],

δE(L1, L2, a) = −h̄c(π2/720)L1L2/a
3, (1a)

which exhibits a drastically different dependence on a than it has on L1 and L2 in the case where all three
of these cavity dimensions are arbitrarily large. We see that δE(L1, L2, a) is very long-range in L1 and L2

but short-range in a, the latter being an unphysical pure artifact of Casimir’s subtraction procedure.
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The celebrated Casimir pressure result between the two L1 × L2 plates of this “perfectly conducting”
L1 × L2 × a rectangular cavity is of course given by [1],

−
(
∂δE(L1,L2,a)

∂a

)
(L1L2)−1 = −π2h̄c/(240a4), (1b)

which not only is short-range in a, but also is unphysically unbounded as the separation a between the two
L1 × L2 plates goes to zero! Likewise, Casimir’s “subtracted energy” of Eq. (1a) is unphysically unbounded
as the separation a between the two L1 × L2 plates goes to zero. Thus there is a second pathology intrinsic
to Casimir’s celebrated pressure result, one which is the consequence of the wholly unphysical “perfect
conductivity” of Casimir’s cavity even notwithstanding the finite and unique nature of Casimir’s “subtracted
energy” result δE(L1, L2, a) of Eq. (1a)—the mere finite uniqueness of Casimir’s “subtracted energy” result
of course does not per se imply that that result is physically correct or sound !

This second pathology in Casimir’s celebrated pressure result focuses our attention on Casimir’s own
comment that any “reasonable” cutoff of 1

2

∑
h̄ω which is to be applied before his subtraction procedure and

his subsequent removal of that cutoff is undertaken must adequately model the fact that real conducting metals
are transparent to sufficiently high-frequency electromagnetic fields. Casimir’s recipe for a “reasonable” cutoff
of a sum 1

2

∑
h̄ω incorporates that feature via the replacement of such a sum by 1

2

∑
h̄ωf(ω/(cκ)), where f(x)

has the salient characteristics of e−x or e−x
2

for x > 0, namely f(x) is positive and decreases monotonically
from its value of unity at x = 0 in such a way that f(1) = e−1 and f(x) tends very strongly to zero as
x → +∞. Therefore if Casimir had not been so intensely preoccupied with actually carrying through his
programme of cutoff, subtraction and finally removal of the cutoff, it surely would have dawned on him that
the physical nature of real conducting metals forbids the removal at any stage whatsoever in his calculation
of the just-described cutoff which he inserts into it . Given that Casimir’s cutoff is physically required to be
permanently in place, it also would have dawned on Casimir that the entire raison d’être of his (in fact
physically counterproductive) subtraction procedure simply falls away . (It might even then have dawned on
Casimir just how physically counterproductive the effect of his subtraction procedure on his result actually
is.)

In the following section we therefore redo Casimir’s calculation of 1
2

∑
h̄ωf(ω/(cκ)), leaving f(ω/(cκ))

permanently in place—we specifically choose f(x) = e−x because that choice is calculationally advantageous.
Of course we entirely omit Casimir’s counterproductive subtraction procedure.

A simple model of the attraction between two real metal cavity walls

We use Casimir’s techniques to model and calculate the standing-wave electromagnetic-field ground-state
energy 1

2

∑
h̄ω exp(−ω/(cκ)) captured by an L1×L2×a rectangular real metal cavity under the assumption

that L1 � 1/κ and L2 � 1/κ, but without making any assumption about the relation of a to κ. Taking
account of the field polarizations in the way that Casimir does [1] produces,

E(L1, L2, a;κ)
def
= 1

2

∑
h̄ω exp(−ω/(cκ)) =

h̄c

∫ ∞
0

dm1

∫ ∞
0

dm2

[
1
2
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L1

)2
+
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L2

)2) 1
2

e
−
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πm1
κL1

)2
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πm2
κL2

)2) 1
2

+

∞∑
n=1
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πm1

L1

)2
+
(
πm2
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)2
+
(
πn
a

)2) 1
2

e
−
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πm1
κL1

)2
+
(
πm2
κL2

)2
+(πnκa )

2
) 1

2
]
.

(2a)

We now change the two integration variables to u1 = (πm1)/(κL1) and u2 = (πm2)/(κL2) and also take
advantage of the fact that the integrand is an even function of those integration variables to obtain,

E(L1, L2, a;κ) = (2π)−2h̄cκ3L1L2

∫ ∞
−∞

du1

∫ ∞
−∞

du2

[
1
2 (u21 + u22)

1
2 e−(u

2
1+u

2
2)

1
2

+

∞∑
n=1

(
u21 + u22 +

(
πn
κa

)2) 1
2

e
−
(
u2
1+u

2
2+(πnκa )

2
) 1

2

]
.

(2b)

We now switch to polar coordinates, i.e., u = (u21 + u22)
1
2 , and are able to immediately integrate over the

polar angle to obtain,

E(L1, L2, a;κ) = (4π)−1h̄cκ3L1L2

∫ ∞
0

2udu

[
1
2ue
−u +

∞∑
n=1

(
u2 +

(
πn
κa

)2) 1
2

e
−
(
u2+(πnκa )

2
) 1

2

]
. (2c)
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We can now carry out one elementary integration, and under the summation sign change the integration
variable to x = u2 to obtain,

E(L1, L2, a;κ) = (4π)−1h̄cκ3L1L2

[
2 +

∞∑
n=1

∫ ∞
0

dx
(
x+

(
πn
κa

)2) 1
2

e
−
(
x+(πnκa )

2
) 1

2

]
. (2d)

We now carry out one last change of integration variable to w = (x + ((πn)/(κa))2)
1
2 , which implies that

dx = 2wdw and yields,

E(L1, L2, a;κ) = (2π)−1h̄cκ3L1L2

[
1 +

∞∑
n=1

∫ ∞
(πnκa )

dww2e−w

]
. (2e)

At this point it is convenient to switch from the energy within the cavity to the pressure between the two
L1 × L2 plates, namely,

P (a;κ) = −
(
∂E(L1,L2,a;κ)

∂a

)
(L1L2)−1 = −(2π)−1h̄c(κ3/a)

∞∑
n=1

(
πn
κa

)3
e−(πnκa )

= −(2a4)−1π2h̄c

∞∑
n=1

n3
(
e−( π

κa )
)n

.

(2f)

From the familiar geometric series sum
∑∞
n=0 ε

n = (1 − ε)−1 for |ε| < 1, it can (with patience) be worked
out that

∑∞
n=1 n

3εn = ε(1 + 4ε + ε2)(1 − ε)−4 for |ε| < 1. Combining this with Eq. (2f) yields for P (a;κ),
the pressure between the two L1 × L2 plates,

P (a;κ) = − 1
2π

2h̄ce−( π
κa )
(

1 + 4e−( π
κa ) + e−2(

π
κa )
) [
a
(

1− e−( π
κa )
)]−4

= −π−2h̄cκ4(2 + cosh(π/(κa)))(((2κa)/π) sinh(π/(2κa)))−4.

(2g)

From Eq. (2g) it is apparent that the pressure P (a;κ) between the two L1×L2 plates is always attractive,
and that when a � π/κ, P (a;κ) = −3π−2h̄cκ4, which is the large-separation attractive constant pressure
that Casimir’s physically counterproductive subtraction procedure completely deletes from his celebrated
pressure result −π2h̄c/(240a4).

Furthermore, it is clear from Eq. (2g) that as the plate separation a goes to zero, so does pressure P (a;κ)
between those plates. That physically sensible result stands in the starkest imaginable contrast to the fact
that the magnitude of Casimir’s attractive pressure −π2h̄c/(240a4) increases rapidly and without bound as
the plate separation a goes to zero.

Notwithstanding the above devastating obvervations Casimir’s pressure does in fact play a subsidiary
physical role: it turns out to be the lowest-order correction (in powers of (π/(κa))) to the large-separation
constant attractive pressure −3π−2h̄cκ4 between the two L1×L2 plates. One obtains the successive correc-
tions to that large-separation constant attractive pressure −3π−2h̄cκ4 by simply expanding out the Eq. (2g)
result for P (a;κ) in powers of (π/(κa)), a dimensionless physical parameter which we conveniently denote
as α.

From inspection of Eq. (2g) we see that we require the expansion in powers of α of (2 + cosh(α)),

(2 + cosh(α)) = 3(1 + α2/6 + α4/72 + α6/2160 + · · ·),

and we see that we also require the expansion in powers of α of,

((2/α) sinh(α/2))4 = ((2/α2)(cosh(α)− 1))2 = (2/α4)(cosh(2α)− 4 cosh(α) + 3),

from which with some effort we obtain,

((2/α) sinh(α/2))4 = (1 + α2/6 + α4/80 + 17α6/30240 + · · ·).

Therefore,
(2 + cosh(α))((2/α) sinh(α/2))−4 = 3(1 + α4/720− α6/3024 + · · ·),
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and therefore the first two corrections of the large-separation constant attractive pressure −3π−2h̄cκ4 in
powers of (π/(κa)) (which is equal to α) are as follows,

P (a;κ) = −3π−2h̄cκ4 − π2h̄c/(240a4) + (π2h̄c/(1008a4))(π/(κa))2 + · · · . (2h)

The attractive Casimir pressure −π2h̄c/(240a4) is therefore the lowest-order correction in powers of (π/(κa))
of the large-separation constant attractive pressure −3π−2h̄cκ4. We note that the Casimir pressure can never

be the dominant term of Eq. (2h) because that would require α
def
= (π/(κa)) to simultaneously satisfy both

α > (720)
1
4 = 5.18 and α < (3024/720)

1
2 = 2.05, which isn’t possible.

However, because the Casimir pressure −π2h̄c/(240a4) varies rapidly with the plate separation a and
corrects the constant pressure term −3π−2h̄cκ4 which doesn’t vary at all with plate separation a, the Casimir
pressure ought to be discernible even under circumstances in which it is a relatively small correction.

That being said, it is nevertheless very important to understand that the Casimir pressure is merely a
correction term; it is definitely not a physically viable complete description of the attractive pressure between
two parallel plates of an unpowered rectangular cavity.
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