A Proof of Fermat Last Theorem

By Abdelmajid Ben Hadj Salem at Soliman, Tunisia.

Abstract. We give a proof of Pierre de Fermat's Last Theorem using that Beal Conjecture is true [1].

1. Introduction

In 1621, Pierre de Fermat published the following theorem (called the Fermat Last Theorem) :

Theorem 1. : There are no solutions of:

with A, B, C, m, be positive integers with m > 2.

In this paper, we give a proof of this theorem using that Beal Conjecture [1] is true.

2. The Proof

Proof. We suppose that for $m \in \mathbb{N}^*$, m > 2, there is a solution $(A, B, C) \in \mathbb{N}^{3*}$ of (1). Using Beal conjecture [1], then A, B and C have a common factor. Let $\mu \in \mathbb{N}^*$ be the great common factor that divides A, B, C. Then we write:

$$(3) B = \mu B_1$$

$$(4) C = \mu C_1$$

with (A_1, B_1, C_1) are co-prime. The equation (1) becomes:

(5)
$$A_1^m + B_1^m = C_1^m$$

In the following, we suppose that $A_1 > B_1$.

2.1. $B_1 > 1$. As m > 2, we use the Beal Conjecture, then A_1, B_1, C_1 have a common factor >1 which is a contradiction with A_1, B_1, C_1 co-prime. Then the equation (1) has no integer solutions.

2.2. $B_1 = 1$. Then we obtain:

$$A_1^m + 1 = C_1^m \Rightarrow C_1 > A_1$$

We write $C_1 = A_1 + c, c \in \mathbb{N}^*$, then :

(7)
$$(A_1 + c)^m = A_1^m + 1 \Rightarrow c^m + \sum_{k=0}^{k=m-1} C_m^k A_1^k c^{m-k} = 1$$

which is impossible.

Q.E.D

References

[1] A. BEN HADJ SALEM. A Complete Proof of Beal Conjecture. Paper submitted to the journal *Research in Number Theory*. Published in /www.viXra.org/. 1510.0020 v3. 25p. 2015.

Abdelmajid Ben Hadj Salem, 6, Rue du Nil, Cité Soliman Er-Riadh, 8020 Soliman, Tunisia. e-mail: abenhadjsalem@gmail.com