A Proof of Fermat Last Theorem

By Abdelmajid Ben Hadj Salem at Soliman,Tunisia.

Abstract

We give a proof of Pierre de Fermat's Last Theorem using that Beal Conjecture is true [1].

1. Introduction

In 1621, Pierre de Fermat published the following theorem (called the Fermat Last Theorem) :

Theorem 1. : There are no solutions of:

$$
\begin{equation*}
A^{m}+B^{m}=C^{m} \tag{1}
\end{equation*}
$$

with A, B, C, m, be positive integers with $m>2$.

In this paper, we give a proof of this theorem using that Beal Conjecture [1] is true.

2. The Proof

Proof. We suppose that for $m \in \mathbb{N}^{*}, m>2$, there is a solution $(A, B, C) \in \mathbb{N}^{3 *}$ of (1). Using Beal conjecture [1], then A, B and C have a common factor. Let $\mu \in \mathbb{N}^{*}$ be the great common factor that divides A, B, C. Then we write:

$$
\begin{align*}
& A=\mu A_{1} \tag{2}\\
& B=\mu B_{1} \tag{3}\\
& C=\mu C_{1} \tag{4}
\end{align*}
$$

with (A_{1}, B_{1}, C_{1}) are co-prime. The equation (1) becomes:

$$
\begin{equation*}
A_{1}^{m}+B_{1}^{m}=C_{1}^{m} \tag{5}
\end{equation*}
$$

In the following, we suppose that $A_{1}>B_{1}$.
2.1. $B_{1}>1$. As $m>2$, we use the Beal Conjecture, then A_{1}, B_{1}, C_{1} have a common factor >1 which is a contradiction with A_{1}, B_{1}, C_{1} co-prime. Then the equation (1) has no integer solutions.
2.2. $B_{1}=1$. Then we obtain:
(6)

$$
A_{1}^{m}+1=C_{1}^{m} \Rightarrow C_{1}>A_{1}
$$

We write $C_{1}=A_{1}+c, c \in \mathbb{N}^{*}$, then :

$$
\begin{equation*}
\left(A_{1}+c\right)^{m}=A_{1}^{m}+1 \Rightarrow c^{m}+\sum_{k=0}^{k=m-1} C_{m}^{k} A_{1}^{k} c^{m-k}=1 \tag{7}
\end{equation*}
$$

which is impossible.
Q.E.D

References

[1] A. Ben Hadj Salem. A Complete Proof of Beal Conjecture. Paper submitted to the journal Research in Number Theory. Published in /www.viXra.org/. 1510.0020 v3. 25p. 2015.

Abdelmajid Ben Hadj Salem, 6, Rue du Nil, Cité Soliman Er-Riadh, 8020 Soliman, Tunisia. e-mail: abenhadjsalem@gmail.com

