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Abstract: The difference of equations of motion in the covariant theory of gravitation and 

in the general theory of relativity is used to explain the Pioneer anomaly. Calculation shows 

that the velocities of a spacecraft in both theories at equal distances can differ by several 

centimetres per second. This leads also to a possible explanation of the flyby anomaly and 

comet disturbances which are not taken into account by the general theory of relativity. 
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Résumé: Les differences entre les équations de mouvement dans la théorie covariante de 

la gravitation et dans la théorie générale de la gravitation sont utilisées pour expliquer 

“l'anomalie Pioneer”. Le calcul montre que les vélocités des sondes spatiales dans les deux 

theories aux distances différentes peuvent se différencier à plusieurs cm/s. Cela amène à 

l’explication possible de l'anomalie “flyby” et aux perturbations de la comète qui ne sont pas 

pris en compte dans la théorie générale de la relativité. 

 

1. Introduction 

The stories of the American spacecrafts Pioneer 10 and Pioneer 11 began on 2 March  

1972, and, respectively, on 6 April 1973, respectively, at the times of their launches. Both 
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spacecrafts passed in the ecliptic plane of the entire Solar system in opposite directions, 

passing close to different planets. Pioneer 10 on 4 December 1973, reached Jupiter, located at 

a distance of 5.2 a.u. from the Sun (1 a.u. = 1.496·10
11

 m), in June 1983 it passed Pluto (39.4 

a.u.), in May 2001 it was at the distance of 78 a.u., moving at a speed of nearly 13 km/s. 

Starting from a distance of about 20 a.u., when it was evident from the Doppler signal 

from Pioneer 10 that the shift of the speed significantly decreased, caused by the pressure of 

the solar plasma on the spacecraft, after taking into account all other possible causes of 

acceleration, the residual signal from the spacecraft started to show the presence of an 

anomalous acceleration towards the Sun, of the order of 8·10
–10

 m/s
2
 [1]. For Pioneer 11 a 

similar acceleration was of about 8.6·10
–10

 m/s
2
; for the spacecraft Ulysses at distances of 1.3 

– 5.2 a.u. the acceleration reached (12 ± 3)·10
–10

 m/s
2
, while for the spacecraft Galileo – 8·10

–

10
 m/s

2
. 

There are some possible explanations for anomalous acceleration of the spacecrafts. One 

of them for the Pioneer 10 and 11 spacecraft is due to the recoil force associated with an 

anisotropic emission of thermal radiation off the vehicles [2-3]. The other explanations of the 

Pioneer anomaly include new gravitational physical mechanisms [4-10].  

The covariant theory of gravitation (CTG) is an alternative theory to the general theory of 

relativity (GTR) and we present further CTG approach to the problem of the Pioneer anomaly 

by comparing of calculations of CTG and GTR.  

 

2. Metric tensor in CTG 

The metric tensor in spherical coordinates tcx 0
, rx 1

, Qx 2
, 

3x   has the 

following form: 
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and for the functions EKB ,,  we assume that they are the functions only of the radial 

coordinate r  as the distance from the center of the massive body (where we placed the origin) 

to the observation point, located outside the body. 

 

The components of the metric tensor ikg  are as follows [11-12]: 
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where   and   are values that cannot be determined from the equations for the metric, 

which leads to their possible dependence on the properties of test particles in the gravitational 

field, 

M  is the body mass, near which the metric is determined, 

G  is the gravitational constant, 

gcc   is the speed of gravitation propagation. 
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We shall express the metric tensor 
ing  in terms of Cartesian coordinates. For the relation 

of the Cartesian and the spherical coordinates we have: 

 

sin cosx r Q  ,              sin siny r Q  ,              Qrz cos .                      (3) 

 

2 2 2 2x y z r   .                                                        (4) 

 

sin cos cos cos sin sindx dr Q dQr Q d r Q      , 

 

sin sin cos sin sin cosdy dr Q dQr Q d r Q      , 

 

QrdQQdrdz sincos  .                                                 (5) 

 

2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( sin )d dx dy dz dr rdQ r Qd      , 

 

),,( dzdydxd 


,                      ( , , sin )d dr rdQ r Q d .                        (6) 

 

Relations (3) are the rules with the help of which by the known the spherical coordinates 

, ,r Q   the Cartesian coordinates of the point are found. Because of this definition, (4) for the 

Cartesian coordinates will hold in the Riemannian space. 

In (6) the three-vector of displacement of the test particle 


d  has projections on three 

mutually perpendicular axes of the Cartesian coordinate system, equal to dx , dy  and dz . The 

similar projections of the three-vector 


d  on three mutually perpendicular axes of the 

spherical coordinate system are equal to dr , dQr  and sinr Qd . One unit vector in the 
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spherical coordinate system is directed along the radial coordinate r  and the other two are 

perpendicular to it and are directed along the meridians and parallels, where the changes of 

the angles dQ  and d  are measured. 

In view of (6) the four-vector of displacement which is symmetrical with respect to 

dimensions (the four-vector of the distance differential) in spherical coordinates has the form: 

 

( , , , sin )idx cdt dr rdQ r Q d .                                             (7) 

 

To find 
ing  in the Cartesian coordinates through its form in the spherical coordinates (2) 

we must take into account the existing relationship between the coordinates and the 

components of the four-vector of displacement. In the Cartesian coordinates tcx 0
, xx 1

, 

yx 2
, zx 3

, and ),,,( dzdydxdtcdxi  , so to obtain the four-vector of displacement it is 

sufficient to take the differentials of the coordinates. For the spherical coordinates tcx 0
, 

rx 1
, Qx 2

, and 
3x  , but to obtain the corresponding four-vector of displacement it is 

not enough just to use the differentials of the coordinates, we must also multiply them by 

some functions of the coordinates, as seen in (7). Only in this case it becomes possible to 

compare the four-vectors of displacement, expressed in different reference frames. 

However, as follows from (2), the various components of the metric tensor in the spherical 

coordinates, as well as the corresponding Christoffel coefficients have different dimensions. 

This means that the four-vector of displacement in the spherical coordinates should be 

asymmetrical with respect to dimension and have the form: 

 

( , , , )idx cdt dr dQ d .                                                    (8) 
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In general, the transformation of four-vectors and tensors from one frame to another is 

performed by using the transformation matrices of the form 
i

i

k k

x
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

 and 
k

i
i

k
x

x
B




 , so for 

an arbitrary tensor the transformation of four -coordinates 
ix  into the four -coordinates 

ix  is 

valid: 
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We shall find the transformation matrix i

kA   , with the help of which the four -vector (8) 

can be transformed into the four -vector of displacement in Cartesian coordinates. If we take 

into account the relations for the differentials (5), which give the expressions for the 

corresponding partial derivatives, standing before the differentials, then we shall obtain: 
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( , , , ) ( , , , )i i k

kdx ct x y z A dx ct r Q  ,                                         (11) 

 

where 
kdx  is from (8). 

 

To complete the transition from the spherical to Cartesian variables, the angles Q  and   

in (10) should be expressed through x , y  and z  with the help of (3). 

Applying to the tensor 
ikg  from (2) the transformation (9) with the help of i

kA  from (10) 

we find the corresponding metric tensor in the Cartesian variables: 
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2 2
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After replacing the trigonometric functions of the angles Q  and   through x , y  and z  

with the help of (3) the metric tensor (12) in the Cartesian coordinates become as follows: 
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Because for the metric tensor the equality holds: 
n

s

mn

sm gg  , where 


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


ns

ns
n

s
,0

,1
 , it 

allows us to find smg  by the known form 
mng . In particular, for each component of the metric 

tensor with covariant indices we can write: 
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where smD  is the algebraic supplement to the components of the metric tensor 
mng  with 

contravariant indices, which is the minor of the matrix of the tensor with the corresponding 

sign, 

g  is the determinant of the metric tensor 
mng , in our case 1g . 

 

Using this rule, we find smg : 
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With the components of metric tensor (13) and (14) we find the non-zero Christoffel 

symbols for the Cartesian coordinates: 
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where we used the equalities of the type 
r
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With the help of (14) and the expression for the four-vector of displacement 

),,,( dzdydxdtcdxs   we find the square of the interval: 
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The expression (16) for the square of the interval according to [11] coincides with one of 

the two so-called normal forms for the Cartesian coordinates [13]. We obtained it without 

solving the equations for the metric in the Cartesian coordinates, by recalculation the metric 

in spherical coordinates. 

From (16) for the differential of the proper time of a test particle near a massive body it 

follows: 
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where 
dt

d
V


  is the total velocity of the test particle, 

and in the derivation of (17) we used the relations: 

  22222222 )(4)]([)()()( drrrdzdydxd  ,    
2222 )()()()( ddzdydx  . 

 

3. Equation of motion in CTG 
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In CTG, in contrast to GTR, there is its own equation of motion of test bodies, which 

changes the results of the calculations. We shall use the equation of motion of test particles in 

the gravitational field in the form deduced from the principle of least action for CTG [11], 

[14-16]: 
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i
i k s in k
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Γ u J g Φ J

d
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where 0  is the mass density in the reference frame associated with the test particle, 

iu  is the four-velocity of the test particle, 

ii uJ 0  is the mass four-current density, 

d  is the differential of the proper dynamic time of the test particle, 

nkΦ  is the tensor of gravitational field, 

i

ksΓ  are the Christoffel symbols. 

 

The four-vector 
iJ  in the Cartesian coordinates can be represented as follows: 
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where ),,( dzdydxd 


. 

 

In the static case the four-vector of the gravitational potential has the form 


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
, where the scalar potential 

GM

r
   . This gives the tensor of gravitational 

field strengths with the components: 
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Substituting (19) and (20) into the equations of motion (18), taking into account metric 

tensor (13) and non-zero Christoffel symbols (15), with the values of the index 3,2,1,0i , 

we obtain four equations of motion in Cartesian coordinates: 
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here the nonzero terms are indicated, and by the repeated index k , with the values 

3,2,1k  summation is made as usual. 
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We shall write down the equations for the motion in time and for the motion along the axis 

OX  in the explicit form: 
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B B xc B xd dx dt dx dy dz

d d r d r d d d

x BGM xB B r B d x d y d z dt

r Br d d d r d

 


     

 

   

           
              

           

   
        

   

 

(22) 

 

We shall further cancel 0  in (21)-(22). By putting x , y , z  in (21) under the signs of the 

differentials and further summation, taking into account the equality 
2222 rzyx  , we can 

transform (21). Then after multiplying all the parts of (21) by B  we shall obtain: 

 

2 2

d dt dt dr d dt GM dr
B B B

d d d d d d c r d      

   
      

   
,                            (23) 

 

here we have used equality 
 d

dr
B

d

dr

dr

dB

d

dB
 . 

 

Equation (22), taking into account: 

 

  22222222 )(4)]([)()()( drrrdzdydxd  ,    
2222 )()()()( ddzdydx  , 
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can be transformed to the following form: 

 

2 2 22

2 2 2 3

(1 ) 2
.

2 2

d dx B Bxc dt B x d B B r B dr BGM x dt
x

d d r d r d r Br d r d     

          
             

        
 

(24) 

 

For the motion along the axes OY  and OZ , respectively, we obtain: 

 

2 2 22

2 2 2 3

(1 ) 2
.

2 2

d dy B Byc dt B y d B B r B dr BGM y dt
y

d d r d r d r Br d r d     

          
             

        
 

(25) 

 

2 2 22

2 2 2 3

(1 ) 2
.

2 2

d dz B Bzc dt B z d B B r B dr BGM z dt
z

d d r d r d r Br d r d     

          
             

        
 

(26) 

 

In (24) – (26) the value 
d

d
 is the total velocity and 

d

dr
 is the radial velocity of the test 

particle. Further we shall consider the case of motion of a test body near the Sun, when the 

orbit is in the equatorial plane of the spherical coordinate system, and correspondingly in the 

plane XOY  of the Cartesian coordinate system. Then for the test body 0z , the velocity 

0
d

dz
, in (26) 0









 d

dz

d

d
, and over time the coordinate z  does not change. 

After cancelling d  (23) can be integrated: 

 

12

dt GM
B A

d c r
  .                                                      (27) 
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At infinity the gravitational influence of the Sun can be neglected, and we can assume that 

the test body moves inertially. Then the coordinate time t  differs from the proper time of the 

test body   only by the Lorentz factor, so we can determine the value of the constant: 

1
2 2

0

1

1

dt
A

d V c 

 
  
  

, where 0V  is the velocity of the test body at infinity. We can also 

specify that the velocity 0V  at infinity must be, at least to a small degree, directed to the Sun, 

otherwise the test body will never get close to it. 

To simplify the further solution we shall convert the equations (27), (24) and (25) to the 

polar coordinates in the plane of motion of the test body XOY , with the Sun at the origin. 

Substituting cosx r   and siny r   into (24) and (25), expressing the total velocity in 

terms of the radial and tangential velocity components in the form: 

2 2 2

2d dr d
r

d d d



  

     
      

     
, we find: 

 

22 2 2

2 2

2 2

2

cos
2sin cos sin

2

cos cos
cos .

2

d dr d r d B Bc dt
r

d d d d d

B dr d BGM dt
Br

B d d r d

  
  

    

  


  

  
     

 

    
      

   

                  (28) 

 

22 2 2

2 2

2 2

2

sin
2cos sin cos

2

sin sin
sin .

2

d dr d r d B Bc dt
r

d d d d d

B dr d BGM dt
Br

B d d r d

  
  

    

  


  

  
    

 

    
      

   

                  (29) 
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We can get rid of sines and cosines, if we multiply (28) by cos  and (29) by sin , and 

then, respectively, add the two equations. We can also multiply (28) by sin  and (29) by 

cos  and subtract the equations from each other. The results will be as follows: 

 

2 2 22 2

2 2
.

2 2

d r B Bc dt B dr d BGM dt
Br

d d B d d r d



    

      
         

     
                      (30) 

 

2

2
2 0

d dr d
r

d d d

 

  
  .                                                   (31) 

 

Equation (31) is immediately integrated: 

 

2r d
L const

d




  .                                                     (32) 

 

From (32) we see that during the motion of the test body the quantity L  is preserved, 

which is proportional to the density of the orbital angular momentum. Dividing (32) by (27), 

we find: 

 

2

12

d BL

dt GM
r A

c r




 
 

 

.                                                  (33) 

 

Since the square of the total velocity V  of the test body in the polar coordinates is 

composed of the square of the radial component 
dt

dr
r   and the square of the tangential 
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component 
d

V r
dt




  in the form: 

222

VrV   , then the differential of the proper dynamic 

time (17), taking into account (33) will equal: 

 

2 2 2

22

2 2

12

r B L
d dt B

Bc GM
r c A

c r

   
 

 
 

.                                      (34) 

 

From (34) and (27) we find 
dt

dr
r   and then 

d

dr
: 

 

2 2
2

2 2

2

1 12 2

dr BL Bc
B c

dt GM GM
r A A

c r c r

   
   

    
   

.                                 (35) 

 

2
2

2 2

12 2

dr GM BL
c A Bc

d c r r

 
     

 
.                                       (36) 

 

After using (32) in (30) we obtain: 

 

2 22 2 2

2 3 22 2

d r B Bc dt B dr BL BGM dt

d d B d r r d   

    
       

   
.                         (37) 

 

We shall substitute 
d

dt
 from (27) into (37): 

 

2 22 2 2

1 12 2 3 2 22 2

d r B c GM B dr BL GM GM
A A

d B c r B d r r c r 

     
          

    
.                  (38) 
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In fact, we have already found 
d

dr
 in (36) through the interval, and it is easy to check that 

its value is the solution of the equation of motion (38). 

Because according to (32) 
2

d L

d r




 , then dividing 

d

dr
 from (36) by 

d

d




, we find the 

equation of motion of the test body near the Sun in polar coordinates: 

 

2
2 2

2 2

12 2

dr r GM BL
c A Bc

d L c r r

 
     

 
.                                    (39) 

 

2
2

2
2 2 2

12 2

dr
L A

GM BL
r c A Bc

c r r

   

 
   

 

 .                              (40) 

 

Relation (40) is the solution of the problem in the general case. There is a special case in 

which the initial velocity 0V  of the test body is zero, or is directed straight to the Sun. In this 

case the angular momentum of the test body is zero, 0L , and the angle of incidence of the 

test body does not change with time. In other cases, during the motion of the test body, it may, 

depending on the direction and the magnitude of the initial velocity, get close to the Sun for 

the minimal distance R  and then again move away from the Sun, deflecting at some angle. 

With the distance R  the radial velocity becomes equal to zero: 0
dt

dr
r . At this point, the 

total velocity of the test body V  is perpendicular to the radius-vector directed from the Sun, 

and is equal to the tangential component of velocity. From (35) with 0r  taking into account 

relations (2) for B  we see that the constant L  can be found through R  and the initial 

velocity, which is included through 1A  in (27): 
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2

12

2 2

2 2 4

1

1

GM
A

c R
L Rc

GM G M

Rc R c

 

 
 

  

 

.                                         (41) 

 

We can compare the relativistic solution (40) with the formula for the motion of the 

particle in gravitational field of the central type in the classical case [17]: 

 

2
2

2

2
2( )

dr
L A

L
r

r



 

  

 

 ,                                           (42) 

 

where   is proportional to the total energy of the particle and at infinity is equal to 
2

2

0V
, 

GM

r
    is the potential of the gravitational field. 

 

If in (40) we neglect the curvature of space-time, assuming 1B , eliminating the small 

terms of the form 
2 2

4 2

G M

c R


 and 

4

4

0

c

V
, and if we subtract under the root the rest energy of the 

unit mass, equal to 
2c , then (40) turns into (42). 

 

4. Equation of radial motion in GTR 

The standard equations of motion of the test particle near the massive body in the GTR 

was described, for example, in [18]: 
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0
2

2


 d

dx

d

dx
Γ

d

xd mk
i

km

i

,                                                (43) 

 

where   is the proper time of the moving particle as it determined in GTR. 

 

Since the interval can be expressed through the differential of the proper time of the test 

particle in the form dcds  , then (16) can be written as follows: 

 

 d

dx

d

dx
gc

ki

ik2
.                                                      (44) 

 

The non-zero Christoffel symbols for the spherical coordinates are: 

 

B

B
ΓΓ

2

0

10

0

01


 ,   

K

B
Γ

2

1

00


 ,    

K

K
Γ

2

1

11


 ,    

K

E
Γ

2

1

22


 ,    

K

QE
Γ

2

sin 2
1

33


 , 

 

E

E
ΓΓΓΓ

2

3

31

3

13

2

21

2

12


 ,      QQΓ cossin2

33  ,      QΓΓ ctg3

32

3

23  . 

(45) 

 

With 0i  in (43) and metric tensor (1) in (45) only two Christoffel symbols are nonzero: 

B

B
ΓΓ

2

0

10

0

01


 . Using tcx 0

 and rx 1
, taking into account the definition 

dr

dB
B   and 

multiplying (43) by 
c

B
, we find: 

 

0
2

2


 d

dt

d

dB

d

td
B ,              0









 d

dt
B

d

d
,            3

dt
B A

d
 ,               (46) 
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where 3A  is some constant, which can be conveniently associated with the initial velocity 

at infinity. Indeed, at infinity 1B , and the coordinate time t  is the time of the inertial 

reference frame in which the particle is moving at the constant velocity 0V . Then, according 

to the special theory of relativity, 22

01 cVdtd   and 
3

2 2

0

1

1
A

V c



. 

For the motion of the particle along the radius the angular coordinates Q  and   do not 

change, and 0dQ d  . In this case, from (44) for the coordinates tcx 0
 and rx 1

 

taking into account (1) and d  from (46) we obtain: 

 

22 2 2

3 32

2

A c A K dr
c

B B dt

 
   

 
. 

 

According to the Schwarzschild metric 00 2

1 2
1o

GM
B B g

K rc
     , so with 

3

4

1
A

A
  for 

radial motion we have: 

 

2 2

4 42 2

2 2
1 1 1 1o o

dr GM GM
B c A B c A

dt rc rc

   
          

   
.                        (47) 

 

In a more general case, converting from spherical coordinates to Cartesian coordinates and 

then to polar coordinates, as in the previous section, (43) can be reduced to the following 

form: 

 

2
2 2 2

3 2

o
o

B Ldr
c A B c

d r
    .                                             (48) 
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2
2 2 2

3 2

3

o o
o

B B Ldr
c A B c

dt A r
    ,           

22
2 2 2

3 2

o
o

B Ldr r
c A B c

d L r
    . 

 

These equations are used in GTR to describe the planar motion of the bodies relative to 

the fixed center in the polar coordinates. 

 

5. Pioneer anomaly 

5.1. Qualitative approach 

We shall assume that the spacecraft moves away from Earth and the Sun almost radially, 

transmitting to the tracking station the radio signal of known frequency 0 . Because of the 

Doppler effect, the frequency received on Earth will change to: 

 
















c

V

cV

cV
1

cos1

1
0

22

0 



 ,                                            (49) 

 

where V  is the velocity of the spacecraft relative to the Earth, 

   is the angle between the velocity and the direction to the radiation detector. 

 

As the spacecraft gets farther from the Sun with turned-off engines, under the influence of 

solar attraction the velocity V  gradually decreases, so that the frequency   should increase. 

From (49) we can obtain the change of the velocity of the spacecraft and the relative change 

of the frequency during the time t  in which the signal goes from the spacecraft to the Earth: 

 

c

ta

c

V f 







0


,                                                 (50) 
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where fa  is the total acceleration of the spacecraft. 

 

The acceleration fa  is negative, mostly caused by the Sun and directed towards the Sun, 

and the velocity V  is directed at the angle   away from the direction from the spacecraft to 

the Sun. We shall further assume that the relative change in the frequency of the signal (50) is 

of such kind that it takes into account all the possible sources of acceleration and the factors 

influencing the result. Then the residual signal, which is not simulated by anything, can also 

be represented by (50), in which in the place of acceleration the anomalous acceleration pa  

stands: 

 

c

tap

p










 

0


.                                                     (51) 

 

We can estimate the velocity of the spacecraft depending on the radial distance r  from the 

equation of its free radial motion in classical mechanics: 

 

22

2 2

1

2

d r d dr GM

dt dr dt r

 
   

 
,                                              (52) 

 

where M  is the Sun's mass. 

 

Assuming in the first approximation that the motion of the spacecraft is purely radial, we 

shall integrate: 5

2dr GM
V A

dt r
   . We shall assume the velocity of the spacecraft at the 

distance of 87 a.u. was 12.2 km/s, from this we find 
8

5 1.28 10A    m
2
/c

2
. Consequently, at the 
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distance 20R  a.u. for the velocity of the spacecraft in the approximation of the free radial 

motion we should assume about 14.7 km/s. 

We can explain the velocities of the Pioneers in the following way. From (35) in the 

approximation of the radial motion, when the density of the angular momentum 0L , and 

with 
2 2

00 2 2 4
1 1k

GM G M
B B g

rc r c

 
      , for the radial velocity of a freely flying 

spacecraft in CTG we can write: 

 

2

12

1
1

dr
c

dt GM
A

c r

 
 

 
 

.                                               (53) 

 

If we proceed from (52), at the distance of 1 a.u. we can assume that the initial velocity is 

equal to 
4

1 4.361 10V    m/s. This allows us to estimate in (53) the value of the constant 

1 1.00000000071A   and to find the velocity of the spacecraft at different distances. 

In GTR we have a similar formula according to (47): 

 

2

42 2

2 2
1 1 1

dr GM GM
c A

dt rc rc

   
      

   
.                                     (54) 

 

Substituting in (54) 
4

1 4.361 10
dr

V
dt

    m/s with 1r   a.u., we find 

2

4 0.999999998579A  . With the help of (53) and (54) we calculate the velocity of the 

spacecraft according to CTG and GTR at different distances for the case of conditionally 

radial motion. The results are shown in Table 1. 
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As we can see, the velocities of the spacecraft in GTR and CTG are slightly different. If 

the spacecraft starts with 1r   a.u., then the time of its motion up to 5r  a.u. is of the order 

of  
7

1 5 1.82 10t     s (this approximate value is obtained by dividing the distance traveled by 

the average velocity). During this time up to the position with 5r a.u. because of the 

different velocities the difference between the positions of the spacecrafts according to the 

equations of GTR and CTG will grow up to 
5

1 5 3.29 10r     m. For the spacecraft to move 

from 5 to 10 a.u. the time required is, accordingly, about 
7

5 10 3.79 10t     s, what is shown in 

Table 1. 

 

Table 1. The data on the motion of the spacecraft 

r , a.u. V , 10
4
 m/s r , 10

5
 m t , 10

7
 s pa , 10

–10
 m/s

2 

1 4.361    

5 

2.196624147  CTG 

2.196620538  GTR 

3.29 1.82 19.8 

10 

1.746714927  CTG 

1.746712488  GTR 

13.2 3.79 18.3 

15 

1.568321059  CTG 

1.568319299  GTR 

9.47 4.51 9.31 

20 

1.471033615  CTG 

1.471032248  GTR 

7.69 4.92 6.4 

 

Because the velocity of the spacecraft in CTG is somewhat greater than in GTR, then in 

case of the measurements according to the Doppler effect at each time point the spacecraft is 

located farther than it is assumed according to GTR. Because of this difference in the 

distances the velocity of the spacecraft, always decreasing with time because of the attraction 
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of the Sun, is less than the velocity of the spacecraft according to GTR. For example, at the 

distance 51 rr = 5 а.е. + 3.29·10
5
 m according to CTG the velocity of the spacecraft in our 

model calculations will be 2.196478495·10
4
 m/s, whereas according to GTR the spacecraft is 

at the distance of 5 a.u. and has the velocity 2.196620538·10
4
 m/s. As a result, with the help 

of the Doppler effect, the velocity of the spacecraft is registered, decreased relative to the data 

of GTR. This decrease is attributed to the anomalous acceleration acting in the direction 

towards the Sun. 

In the last column of Table 1, we estimated the anomalous acceleration by the formula: 

2)(

2

t

r
ap




 . This acceleration indicates that the spacecraft is situated at the distance that 

seems to be smaller than expected by the value r , which arises during the time t  because 

of the difference in velocities. The distances r  in Table 1 are calculated by an average 

velocity at each interval of motion, so to obtain the total result we should add up all r . This 

will lead over time to the increase in distance between the positions of the spacecrafts 

according to GTR and CTG, and to decrease of the anomalous acceleration pa  with the 

distance as compared with the data in Table 1. As is shown in Table 1, the values of the 

anomalous acceleration are close enough to the data obtained for the effect of Pioneers, and at 

small distances up to 5–10 a.u. they are masked by the acceleration from the pressure force of 

the solar wind. 

 

5.2. Analytical approach 

Now let us try to derive the corresponding formula for the anomalous acceleration, again 

for the case of purely radial motion. Assuming in (35) 0L  , for the velocity of the spacecraft 

in CTG and for its current position relative to the Sun we obtain: 
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2

12

1
dr B

Bc
dt GM

A
c r

 
 

 
 

,                                              (55) 
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A A GM rG M
t A A B r
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A B A B r A B r

c A B c c c

     


 
        

 
 

 

(56) 

 

where 
2 2

00 2 2 4
1 1

GM G M
B g

rc r c

 
      is the time component of the metric in CTG, 

1
2 2

0

1

1

dt
A

d V c 

 
  
  

, where 0V  is the velocity of the spacecraft at infinity, the radial 

coordinate r  is the function of the time t  of the motion from the Sun, and the constant 6A  is 

the parameter of integration. 

 

If at a given time point 0t t  we know the radial distance 0r r  and the velocity 0

dr
V

dt
 , 

it allows us to calculate the constants 1A  and 6A  in (55) and (56). Thus, in the previous 

section, we assumed for simplicity that 1B  , at 0t   the spacecraft was at a distance 1r   

a.u., and the constant 1 1.00000000071A  . These data can be used to estimate the constant 

6A  in (56). 

We will integrate now (54) for the radial motion in GTR: 
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   
   

  
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 

 
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  


   
    

 

                 (57) 

 

In (57) the constant 7A  appears, which must be found together with the constant 4A  from 

the initial conditions of motion. 

We suppose now that we have derived from (56) the dependence of the radial distance in 

CTG as the function of time: ( ) ( )kr t r t . Similarly, from (57) we can determine the 

dependence of the radial distance in GTR as the function of time: ( ) ( )or t r t . At a first 

approximation, the gravitational acceleration of the Sun depends on the radial distance 

according to Newton’s formula, and we can write for the accelerations in CTG and GTR the 

following: 

 

2
( )

( )
k

k

GM
g t

r t
  ,                         

2
( )

( )
o

o

GM
g t

r t
  . 

 

The anomalous acceleration as a function of the time of the spacecraft’s radial motion is 

found as the difference between these accelerations: 

 

2 2

2 2

[ ( ) ( )]
( ) ( ) ( )

( ) ( )

k o
p o k

k o

GM r t r t
a t g t g t

r t r t


    . 
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The meaning of this equality is that in the case of the Pioneers the acceleration ( )og t , 

calculated in GTR, is overestimated in the absolute value as compared to the measured 

acceleration. If the acceleration ( )kg t  in CTG describes the motion more precisely and is 

equal to the measured acceleration, then to obtain it we should subtract the anomalous 

acceleration from the acceleration in GTR: ( ) ( ) ( )k o pg t g t a t  . 

 

6. Conclusion 

In GTR the gravitational field is the same as the metric field with its metric tensor. As a 

result the gravitational field does not create the metric similar to electromagnetic field in 

equation for the metric, and the metric tensor is calibrated with the help of Newton's law of 

universal gravitation. We can suppose that such calibration is not accurate because Newton's 

law has no relativistic corrections. On the other hand in CTG the gravitational field is a 

fundamental field that has its stress-energy tensor and can influence the metric in the equation 

for the metric. The metric component 
2 2

00 2 2 4
1k

GM G M
B g

rc r c

 
     in CTG depends on the 

energy of the gravitational field and it seems it is more precise then 00 2

1 2
1o

GM
B g

K rc
     

in GTR. The metric component 00g  is in both equations of motion in CTG and GTR but the 

equations are different. 

From the point of view of CTG the effect of the Pioneers is explained as the result of 

using an equation of motion that does not coincide with the equation of motion of GTR.   

All computer calculations associated with the motion of the spacecrafts obligatorily use 

GTR and take into account not only the influence of the Sun, but of other planets. If the 

equation of motion of CTG is valid, there is no anomalous acceleration in the effect of 

Pioneer, and the effect is due to the use of GTR instead of CTG. The following fact also 

points out to the probable inaccuracy of GTR that in the signal from the Pioneers we could 
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see not simulated periodic changes associated with the diurnal rotation of the Earth and its 

annual revolution around the Sun. From Table 1 it follows also that the velocities of the 

spacecraft in GTR and CTG at equal distances can differ by several centimetres per second. 

At the same time, in several articles the so-called flyby effect has been described, when the 

velocity of spacecrafts differs from the calculated values up to several centimetres per second 

[19-20]. 

There are also works such as [21] – [23], according to which the motion of the comets: 

Halley’s comet, Encke and others, after their passing near the planets disturbances of 

unknown nature are discovered, which are not taken into account by GTR equations (48). We 

can assume that the recalculation of the motion of spacecrafts and comets in terms of CTG 

with the help of equations (35), (36), and (40) will improve the situation. 
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