A detailed explanation of each statement

/machine translation/

Fermat's Last Theorem (main case: n is prime):

For integers A, B, C and prime n>2 the equal $A^n+B^n=C^n$ does not exist.

From this it follows that equation $a^{dn}+b^{dn}=c^{dn}$, or $(a^d)^n+(b^d)^n=(c^d)^n$, also does not exist.

<u>The essence of the contradiction</u>: If A, B, C are integers and $A^n+B^n=C^n$, then A+B-C=0 and $A^n+B^n<C^n$.

If A+B=C then $A^n+B^n < (A+B)^n$.

Notations are done in a number system with a prime base n:

Prime base we have because in this case, there are important properties of the integers evidence: Fermat's Little Theorem, and others.

 $A_{(t)}$ – t-th digit from the end in the number A; for convenience: $A_{(1)}=A'$, $A_{(2)}=A''$, $A_{(3)}=A'''$; Use a dash to indicate the numbers greatly simplifies the writing of formulas, especially that only the last three digits are primarily used in the proof.

 $A_{[t]}$ – t-digits ending of the number A; $A_{/t/}$, where A=pq...r, – the product of $p_{[t]}*q_{[t]}*...*r_{[t]}$. The factors p, q, ... r can be as simple and composite numbers. For example, in the decimal system for p=321, q=1433: $p_{(1)}=p'=1$, $p_{(2)}=p''=2$, $p_{(2)}=p'''=3$, μ T. π .; $q_{(1)}=q'=3$, $q_{(2)}=q''=3$, $q_{(3)}=q'''=4$, etc. $p_{[2]}=21$; $q_{[2]}=33$; $(pq)_{\{2\}}=p_{[2]}*q_{[2]}=21*33$, wherein $(pq)_{[2]}=93$.

From binomial theorem (for prime n) its follow two simple lemmas: $0a^{\circ}$) if $A_{[t+1]}=xn^{t}+1$, where t>0 and A is the base of a degree Aⁿ, then the digit $(A^{n})_{(t+2)}=x$;

Proof. We write the last three terms of the expansion of the binomial: $(xn^{t}+1)^{n}=...+0,5*n^{*}(n-1)^{*}(xn^{t})^{2}+n^{*}xn^{t}+1=...+0,5(n-1)x^{2*}n^{2t+1}+xn^{t+1}+1$, where the second (from the end) member has t+1 zeros, and all subsequent (from the end) the members have at least t+2 zeros. Consequently, the digit with number t+2 is equal to x, i.e. $(A^{n})_{(t+2)}=x$.

0b°) if $a_{[t+1]}=xn^t+1$, where digit $a_{(t+1)}=x>0$ and t>0, then the digit $[(a_{[t+1]})^{n-1}]_{(t+1)} = \ll x \gg = n-x$. In this case $(xn^t+1)^{n-1}=...+(n-1)*xn^t+1=...+(-x)n^t+1=Sn^{t+1}+(-x)n^t+1$, where the second (from the end) member has t zeros, and the sum S has not less than t+1 zeros. At the same time the absolute value $Sn^{t+1}>|(-x)n^t+1|$. Therefore, to get a positive value of $(-x)n^t+1$ [and $(-x)n^t$], the number S must be reduced by n^{t+1} and by this number increase the amount of the last two terms $(-x)n^t+1$ with the results obtained $(n-x)n^t+1$, where the digit n-x is simple and positive number.

So, let us assume that for a prime number n>2, relatively prime A, B, C, and A'[or B'] $\neq 0$ 1°) Aⁿ=(C-B)P [=aP=Cⁿ-Bⁿ, where P=pⁿ and /for convenience/ a=C-B] where, as known, $C^{n}-B^{n}=(C-B)P$, where $P=C^{n-1}+BC^{n-2}+...+B^{n-2}C+C^{n-1}$, – formula of elementary algebra course. If the digit A'=0, instead of A we consider the number B.

1a°) P'=p'=1 (a consequence of Fermat's little theorem),

Indeed, since A' \neq 0, then, according to Fermat's little theorem, Aⁿ⁻¹'=1. If B'=0, then Bⁿ⁻¹'=0. As a result from (A'Aⁿ⁻¹')=(C'Cⁿ⁻¹'-B'Bⁿ⁻¹') follows A'=(C'-B')', from here P'=1. Equality p'=1 follows from the equality P=pⁿ. The equality P=pⁿ follows from the fact that: 1) the numbers (C-B) and P are relatively prime (if A' \neq 0 and the numbers A, B, C are mutually prime), and their product is the n-th degree. Therefore, the numbers (C-B) and P are the n-th powers. The numbers (C-B) and P are relatively prime, because the number P can be represented as: P=D(C-B)²+n(CB)ⁿ⁻¹.

1b°) [U=] A+B-C=un^k, where k [>0] – the number of zeroes after the digit u' (i.e. $U_{[k+1]}\neq 0$). Equality U'=0 follows from the equation A'=C'-B'. Since U>0, then it has a significant digits, the first of which from the end has the number k+1.

1c°) g – any integer solution [which exists!] of the equation $(Ag)_{[k+2]}=1$.

This follows from the lemma for the number system with the prime base n: in the multiplication table $Ag_{(i)}$ (i=1, 2... n-1), where $A' \neq 0$ and $g_{(i)}$ – digits in a number system with the prime base n, all the latest digits $[Ag_{(i)}]'$ (i=0, 1, 2, ... n-1) are different (the lemma is easily proved by contradiction). Consequently, for any digit A' not equal to zero, there is a one-digit number $G_{[1]}=g$, that (A'g)'=1.

Further, if the number x>0, then we take the number A with ending $A_{[2]}$ =xn+1.

It is easy to find such number $G_{[2]}=yn+1$, that $[(xn+1)(yn+1)]_{[2]}=1$, from here (x+y)n+1=1, from here y=n-x. Etc. Thus, by multiplying of the number A by corresponding numbers $G_{[i]}$, or as a result by the number $g=G_{[1]}*G_{[2]}*...G_{[t]}$, we can get the number Ag with the end $(Ag)_{[t]}=1$, where t is arbitrarily large.

An example of the last digits in multiplication table for n=7 and g=2:

 $0 \ge 2 = ...0, 1 \ge 2 = ...2, 2 \ge 2 = ...4, 3 \ge 2 = ...6, 4 \ge 2 = ...1, 5 \ge 2 = ...3, 6 \ge 2 = ...5$, with a set of the latest digits 0, 2, 4, 6, 1, 3, 5, where no figure is not repeated!

An elementary proof of the Fermat's Last Theorem

Let's multiply the equation 1° by the number g^n from 1c° received the new equality 1°: 1°) $A^n = (C-B)P$, where $P = Pg^{n-1}$, A = Ag, $A^n = A^ng^n$ and $A_{[k+2]} = A^n_{[k+2]} = 1$; k and n are const. Let us show that the ending $(C-B)_{[k+2]}$, or $a_{[k+2]}$, is also equal to 1. To do this, the number P will be represented in the following form: $P = q^{n-1} + Qn^{k+2}$ [this is the **KEY** to the demonstration], where q and Q are integers. Now, leaving in the numbers A, C-B [or a] and P only (k+2)-digit ending, we obtain the equation: $A^n_{[k+2]} = (a_{[k+2]*}q^{n-1}_{[k+2]})_{[k+2]}$. And then, based on the digits a", a"'' etc. up to (k+2)-th digit of a, we will consistently calculate the second, third, etc. digit of numbers q", (qⁿ⁻¹)", a"'',

then $a^{""}$, $q^{""}$, $(q^{n-1})^{""}$, $a^{""}$, etc. (All of them are equl to zero. Hence $P=1+Qn^{k+2}=1^{n-1}+Qn^{k+2}$.)

 2°) **a**'= **q**'=1, which is deduced from 1° b.

Because $(\mathbf{aP})'=1$, where $\mathbf{P}'=1$.

3°) From the identity $\mathbf{A}_{(2)}^{n} = [(\mathbf{a}^{n}+1)(\mathbf{q}^{n}+1)^{n-1}]_{(2)} = (cf. 0b^{\circ}) = [(\mathbf{a}^{n}+1)(-\mathbf{q}^{n}+1)]_{(2)} [=0]$ we find: $\mathbf{a}^{n} = \mathbf{q}^{n}$ and the degree of endings $\mathbf{A}_{(2)}^{n} = (\mathbf{a}^{n}+1)_{[2]}^{n}$, from here (cf. 0a°) we find the digit $\mathbf{A}_{(3)}^{n}$:

This main logic double-thread operation: from the ending $A^{n}_{(2)}$ [=1] we find a parity digits **a**" and **q**", hence, and the equality of endings $a_{[2]}$ and $q_{[2]}$. But the latter form (make) product of the endings in the form of degree $A^{n}_{\{2\}} = (a^{"}n+1)_{[2]}^{n}$.

And it is important that this work is the degree \mathbf{A}^n , in which the meaning of the digit $\mathbf{A}^n_{(3)}$ is uniquely determined by the degree of ending $\mathbf{A}^n_{\prime\prime\prime}$!

4°) $\mathbf{A}^{n}_{(3)}(=0 - \text{cf. } \mathbf{1}^{\circ}) = \mathbf{a}^{"}$ and therefore $\mathbf{a}^{"}=\mathbf{q}^{"}=0$ (otherwise $\mathbf{A}^{n}_{(3)} \neq 0$). That is, from $(\mathbf{A}^{n})^{"}=\mathbf{A}^{"}$, where $\mathbf{A}^{"}=\mathbf{a}^{"}$ and $(\mathbf{A}^{n})^{"}=0$, we find 3: $\mathbf{a}^{"}=\mathbf{q}^{"}=0$.

And then, we makes calculations $3^{\circ}-4^{\circ}$ with all subsequent digits [until the (k+1)-th] of the numbers **A**, **P** and **a**, with the result equality $A_{[k+1]}=P_{[k+1]}=a_{[k+1]}=(C-B)_{[k+1]}=1$ and

5°) $[\mathbf{A} - (\mathbf{C} - \mathbf{B})]_{[k+1]} = [\mathbf{A} + \mathbf{B} - \mathbf{C}]_{[k+1]} = \mathbf{U}_{[k+1]} = 0$, which contradicts to 1b°. Thus FLT proved.

Victor SOROKINE (May 3, 2015. Mezos, France. victor.sorokine@gmail.com)