A detailed explanation of each statement

/machine translation/

Fermat's Last Theorem (main case: n is prime):
For integers A, B, C and prime $\mathrm{n}>2$ the equal $\mathrm{A}^{\mathrm{n}}+\mathrm{B}^{\mathrm{n}}=\mathrm{C}^{\mathrm{n}}$ does not exist.
From this it follows that equation $\mathrm{a}^{\mathrm{dn}}+\mathrm{b}^{\mathrm{dn}}=\mathrm{c}^{\mathrm{dn}}$, or $\left(\mathrm{a}^{\mathrm{d}}\right)^{\mathrm{n}}+\left(\mathrm{b}^{\mathrm{d}}\right)^{\mathrm{n}}=\left(\mathrm{c}^{\mathrm{d}}\right)^{\mathrm{n}}$, also does not exist.

The essence of the contradiction: If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are integers and $\mathrm{A}^{\mathrm{n}}+\mathrm{B}^{\mathrm{n}}=\mathrm{C}^{\mathrm{n}}$, then $\mathrm{A}+\mathrm{B}-\mathrm{C}=0$ and $\mathrm{A}^{\mathrm{n}}+\mathrm{B}^{\mathrm{n}}<\mathrm{C}^{\mathrm{n}}$.
If $A+B=C$ then $A^{n}+B^{n}<(A+B)^{n}$.

Notations are done in a number system with a prime base n:

Prime base we have because in this case, there are important properties of the integers evidence: Fermat's Little Theorem, and others.
$\mathrm{A}_{(t)}-\mathrm{t}$-th digit from the end in the number A ; for convenience: $\mathrm{A}_{(1)}=\mathrm{A}^{\prime}, \mathrm{A}_{(2)}=\mathrm{A}^{\prime \prime}, \mathrm{A}_{(3)}=\mathrm{A}^{\prime \prime}$; Use a dash to indicate the numbers greatly simplifies the writing of formulas, especially that only the last three digits are primarily used in the proof.
$A_{[t]}-t$-digits ending of the number $A ; A_{t t}$, where $A=p q \ldots r$, the product of $p_{[t]} * q_{[t]} * \ldots * r_{[t]}$. The factors $\mathrm{p}, \mathrm{q}, \ldots \mathrm{r}$ can be as simple and composite numbers.
For example, in the decimal system for $\mathrm{p}=321, \mathrm{q}=1433$:
$p_{(1)}=p^{\prime}=1, p_{(2)}=p^{\prime \prime}=2, p_{(2)}=p^{\prime \prime \prime}=3$, и т.д.; $q_{(1)}=q^{\prime}=3$, $q_{(2)}=q^{\prime \prime}=3, q_{(3)}=q^{\prime \prime}=4$, etc.
$\mathrm{p}_{[2]}=21 ; \mathrm{q}_{[2]}=33 ;(\mathrm{pq})_{\{2]}=\mathrm{p}_{[2]} * \mathrm{q}_{[2]}=21 * 33$, wherein $(\mathrm{pq})_{[2]}=93$.
From binomial theorem (for prime n) its follow two simple lemmas: $\left.0 a^{\circ}\right)$ if $A_{[t+1]}=\mathrm{xn}^{\mathrm{t}}+1$, where $\mathrm{t}>0$ and A is the base of a degree A^{n}, then the $\operatorname{digit}\left(\mathrm{A}^{\mathrm{n}}\right)_{(t+2)}=\mathrm{x}$;

Proof. We write the last three terms of the expansion of the binomial: $\left(\mathrm{xn}^{\mathrm{t}}+1\right)^{\mathrm{n}}=\ldots+0,5 * \mathrm{n}^{*}(\mathrm{n}-1) *\left(\mathrm{xn}^{\mathrm{t}}\right)^{2}+\mathrm{n}^{*} \mathrm{xn}^{\mathrm{t}}+1=\ldots+0,5(\mathrm{n}-1) \mathrm{x}^{2} * \mathrm{n}^{2 t+1}+\mathrm{xn}^{\mathrm{t}+1}+1$, where the second (from the end) member has $t+1$ zeros, and all subsequent (from the end) the members have at least $t+2$ zeros. Consequently, the digit with number $t+2$ is equal to x, i.e. $\left(A^{n}\right)_{(t+2)}=x$.
$\left.0 b^{\circ}\right)$ if $\mathrm{a}_{[\mathrm{t}+1]}=\mathrm{xn}^{\mathrm{t}}+1$, where digit $\mathrm{a}_{(\mathrm{t}+1)}=\mathrm{x}>0$ and $\mathrm{t}>0$, then the digit $\left[\left(\mathrm{a}_{[\mathrm{t}+1]}\right)^{\mathrm{n}-1}\right]_{(\mathrm{t}+1)}=<-\mathrm{x} \gg \mathrm{n}-\mathrm{x}$. In this case $\left(\mathrm{xn}^{\mathrm{t}}+1\right)^{\mathrm{n}-1}=\ldots+(\mathrm{n}-1)^{*} \mathrm{xn}^{\mathrm{t}}+1=\ldots+(-\mathrm{x}) \mathrm{n}^{\mathrm{t}}+1=\mathrm{Sn}^{\mathrm{t}+1}+(-\mathrm{x}) \mathrm{n}^{\mathrm{t}}+1$, where the second (from the end) member has t zeros, and the sum S has not less than $t+1$ zeros. At the same time the absolute value $\mathrm{Sn}^{\mathrm{t}+1}>\left|(-\mathrm{x}) \mathrm{n}^{\mathrm{t}}+1\right|$. Therefore, to get a positive value of $(-\mathrm{x}) \mathrm{n}^{\mathrm{t}}+1$ [and $\left.(-\mathrm{x}) \mathrm{n}^{\mathrm{t}}\right]$, the number S must be reduced by $\mathrm{n}^{\mathrm{t}+1}$ and by this number increase the amount of the last two terms $(-x) n^{t}+1$ with the results obtained $(n-x) n^{t}+1$, where the digit $n-x$ is simple and positive number.

So, let us assume that for a prime number $\mathrm{n}>2$, relatively prime $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and $\mathrm{A}^{\prime}\left[\right.$ or $\left.\mathrm{B}^{\prime}\right] \neq 0$
$\left.1^{\circ}\right) \mathrm{A}^{\mathrm{n}}=(\mathrm{C}-\mathrm{B}) \mathrm{P}\left[=\mathrm{aP}=\mathrm{C}^{\mathrm{n}}-\mathrm{B}^{\mathrm{n}}\right.$, where $\mathrm{P}=\mathrm{p}^{\mathrm{n}}$ and /for convenience/ $\left.\mathrm{a}=\mathrm{C}-\mathrm{B}\right]$ where, as known,
$\mathrm{C}^{\mathrm{n}}-\mathrm{B}^{\mathrm{n}}=(\mathrm{C}-\mathrm{B}) \mathrm{P}$, where $\mathrm{P}=\mathrm{C}^{\mathrm{n}-1}+\mathrm{BC}^{\mathrm{n}-2}+\ldots+\mathrm{B}^{\mathrm{n}-2} \mathrm{C}+\mathrm{C}^{\mathrm{n}-1}$, - formula of elementary algebra course. If the digit $A^{\prime}=0$, instead of A we consider the number B.
$\left.1 \mathrm{a}^{\circ}\right) \mathrm{P}^{\prime}=\mathrm{p}^{\prime}=1(\mathrm{a}$ consequence of Fermat's little theorem),
Indeed, since $A^{\prime} \neq 0$, then, according to Fermat's little theorem, $\mathrm{A}^{\mathrm{n}-1}=1$. If $\mathrm{B}^{\prime}=0$, then $\mathrm{B}^{\mathrm{n}-1}=0$. As a result from $\left(A^{\prime} A^{n-1}\right)=\left(C^{\prime} C^{n-1}-B^{\prime} B^{n-1}\right)$ follows $A^{\prime}=\left(C^{\prime}-B^{\prime}\right)^{\prime}$, from here $P^{\prime}=1$. Equality $\mathrm{p}^{\prime}=1$ follows from the equality $\mathrm{P}=\mathrm{p}^{\mathrm{n}}$. The equality $\mathrm{P}=\mathrm{p}^{\mathrm{n}}$ follows from the fact that:

1) the numbers ($C-B$) and P are relatively prime (if $A^{\prime} \neq 0$ and the numbers A, B, C are mutually prime), and their product is the n-th degree. Therefore, the numbers ($\mathrm{C}-\mathrm{B}$) and P are the n-th powers. The numbers $(C-B)$ and P are relatively prime, because the number P can be represented as: $\mathrm{P}=\mathrm{D}(\mathrm{C}-\mathrm{B})^{2}+\mathrm{n}(\mathrm{CB})^{\mathrm{n}-1}$.
$\left.1 b^{\circ}\right)[\mathrm{U}=] \mathrm{A}+\mathrm{B}-\mathrm{C}=\mathrm{un}^{\mathrm{k}}$, where $\mathrm{k}[>0]$ - the number of zeroes after the digit $\mathrm{u}^{\prime}\left(\mathrm{i} . e . \mathbf{U}_{[\mathrm{k}+1]} \neq 0\right)$. Equality $U^{\prime}=0$ follows from the equation $A^{\prime}=C^{\prime}-B^{\prime}$. Since $U>0$, then it has a significant digits, the first of which from the end has the number $\mathrm{k}+1$.
$\left.1 c^{\circ}\right) \mathrm{g}$ - any integer solution [which exists!] of the equation $(\mathrm{Ag})_{[\mathrm{k}+2]}=1$.
This follows from the lemma for the number system with the prime base n : in the multiplication table $\mathrm{Ag}_{(\mathrm{i})}(\mathrm{i}=1,2 \ldots \mathrm{n}-1)$, where $\mathrm{A}^{\prime} \neq 0$ and $\mathrm{g}_{(\mathrm{i})}$ - digits in a number system with the prime base n , all the latest digits $\left[\mathrm{Ag}_{(\mathrm{i})}\right]^{\prime}(\mathrm{i}=0,1,2, \ldots \mathrm{n}-1)$ are different (the lemma is easily proved by contradiction). Consequently, for any digit A' not equal to zero, there is a one-digit number $\mathrm{G}_{[1]}=\mathrm{g}$, that $\left(\mathrm{A}^{\prime} \mathrm{g}\right)^{\prime}=1$.
Further, if the number $x>0$, then we take the number A with ending $A_{[2]}=x n+1$.
It is easy to find such number $\mathrm{G}_{[2]}=\mathrm{yn}+1$, that $[(\mathrm{xn}+1)(\mathrm{yn}+1)]_{[2]}=1$, from here $(\mathrm{x}+\mathrm{y}) \mathrm{n}+1=1$, from here $\mathrm{y}=\mathrm{n}-\mathrm{x}$. Etc. Thus, by multiplying of the number A by corresponding numbers $\mathrm{G}_{[\mathrm{i}]}$, or as a result by the number $g=\mathrm{G}_{[1]} * \mathrm{G}_{[2]} * \ldots \mathrm{G}_{[t]}$, we can get the number Ag with the end $(\mathrm{Ag})_{[t]}=1$, where t is arbitrarily large.
An example of the last digits in multiplication table for $\mathrm{n}=7$ and $\mathrm{g}=2$:
$0 \times 2=\ldots 0,1 \times 2=\ldots 2,2 \times 2=\ldots 4,3 \times 2=\ldots 6,4 \times 2=\ldots 1,5 \times 2=\ldots 3,6 \times 2=\ldots 5$, with a set of the latest digits $0,2,4,6,1,3,5$, where no figure is not repeated!

An elementary proof of the Fermat's Last Theorem

Let's multiply the equation 1° by the number g^{n} from $1 \mathrm{c}^{\circ}$ received the new equality $\mathbf{1}^{\circ}$:
$\left.\mathbf{1}^{\circ}\right) \mathbf{A}^{\mathrm{n}}=(\mathbf{C}-\mathbf{B}) \mathbf{P}$, where $\mathbf{P}=\mathrm{Pg}^{\mathrm{n}-1}, \mathbf{A}=\mathrm{Ag}, \mathbf{A}^{\mathrm{n}}=\mathrm{A}^{\mathrm{n}} \mathrm{g}^{\mathrm{n}}$ and $\mathbf{A}_{[\mathrm{k}+2]}=\mathbf{A}_{[k+2]}^{\mathrm{n}}=1 ; \mathrm{k}$ and n are const.
Let us show that the ending $(\mathbf{C}-\mathbf{B})_{[k+2]}$, or $\mathbf{a}_{[k+2]}$, is also equal to 1 .
To do this, the number \mathbf{P} will be represented in the following form: $\mathbf{P}=\mathbf{q}^{\mathrm{n}-1}+\mathbf{Q n}^{\mathrm{k}+2}$ [this is the KEY to the demonstration], where q and Q are integers. Now, leaving in the numbers A, C-B [or a] and P only ($k+2$)-digit ending, we obtain the equation: $\mathbf{A}_{[k+2]}=\left(\mathbf{a}_{[k+2]} * \mathbf{q}^{\mathrm{n}-1}{ }_{[k+2]}\right)_{[k+2]}$. And then, based on the digits $\mathbf{a}^{\prime \prime}, \mathbf{a}^{\prime "}$ etc. up to (k+2)-th digit of \mathbf{a}, we will consistently calculate the second, third, etc. digit of numbers $\mathbf{q}^{\prime \prime},\left(\mathbf{q}^{\mathrm{n}-1}\right)^{\prime}, \mathbf{a}^{\mathbf{\prime}}{ }^{\prime}$, then $\mathbf{a}^{\mathbf{\prime}}, \mathbf{q} \mathbf{q}^{\prime \prime},\left(\mathbf{q}^{\mathrm{n}-1}\right){ }^{\text {"' }}, \mathbf{a}$ "", etc. (All of them are equl to zero. Hence $\mathbf{P}=\mathbf{1}+\mathbf{Q} \mathbf{n}^{k+2}=1^{\mathrm{n}-1}+\mathbf{Q}^{\mathrm{k}+2}$.)
$\left.2^{\circ}\right) \mathbf{a}^{\prime}=\mathbf{q}^{\prime}=1$, which is deduced from $1^{\circ} b$.

Because (aP) ${ }^{\prime}=1$, where $\mathbf{P}^{\prime}=1$.
$\left.3^{\circ}\right)$ From the identity $\mathbf{A}_{(2)}=\left[\left(\mathbf{a}^{\prime \prime} n+1\right)\left(\mathbf{q}^{\prime \prime} n+1\right)^{n-1}\right]_{(2)}=\left(\right.$ cf. $\left.0 b^{\circ}\right)=\left[\left(\mathbf{a}^{\prime \prime} n+1\right)\left(-\mathbf{q}^{\prime \prime} n+1\right)\right]_{(2)}[=0]$ we find: $\mathbf{a}^{"}=\mathbf{q}$ " and the degree of endings $\mathbf{A}^{\mathrm{n}}{ }_{\{2]}=\left(\mathbf{a}^{" n+1}\right)_{[2]}{ }^{\mathrm{n}}$, from here (cf. $0 \mathrm{a}^{\circ}$) we find the digit $\mathbf{A}^{\mathrm{n}}{ }_{(3)}$: This main logic double-thread operation: from the ending $\mathbf{A}^{\mathrm{n}}{ }_{(2)}[=1]$ we find a parity digits $\mathbf{a}^{"}$ and $\mathbf{q}^{\prime \prime}$, hence, and the equality of endings $\mathbf{a}_{[2]}$ and $\mathbf{q}_{[2]}$. But the latter form (make) product of the endings in the form of degree $\mathbf{A}^{\mathrm{n}}{ }_{\{2]}=\left(\mathbf{a}^{\prime \prime} \mathrm{n}+1\right)_{[2]}{ }^{\mathrm{n}}$.
And it is important that this work is the degree \mathbf{A}^{n}, in which the meaning of the digit $\mathbf{A}^{\mathrm{n}}{ }_{(3)}$ is uniquely determined by the degree of ending $\mathbf{A}^{\mathrm{n}}{ }_{t t}$!

That is, from $\left(\mathbf{A}^{\mathrm{n}}\right)^{\prime \prime}=\mathbf{A} \mathbf{A}^{"}$, where $\mathbf{A}^{\prime \prime}=\mathbf{a} "$ and $\left(\mathbf{A}^{\mathrm{n}}\right)^{\prime \prime}=0$, we find3: $\mathbf{a}^{"}=\mathbf{q}=0$.
And then, we makes calculations $3^{\circ}-4^{\circ}$ with all subsequent digits [until the $(\mathrm{k}+1)$-th] of the numbers \mathbf{A}, \mathbf{P} and \mathbf{a}, with the result equality $\mathbf{A}_{[\mathrm{k}+1]}=\mathbf{P}_{[\mathrm{k}+1]}=\mathbf{a}_{[\mathrm{k}+1]}=(\mathbf{C}-\mathbf{B})_{[\mathrm{k}+1]}=1$ and
$\left.5^{\circ}\right)[\mathbf{A}-(\mathbf{C}-\mathbf{B})]_{[\mathrm{k}+1]}=[\mathbf{A}+\mathbf{B}-\mathbf{C}]_{[\mathrm{k}+1]}=\mathbf{U}_{[\mathrm{k}+1]}=0$, which contradicts to $1 \mathrm{~b}^{\circ}$. Thus FLT proved.
Victor SOROKINE
(May 3, 2015. Mezos, France. victor.sorokine@gmail.com)

