Huge class of infinite series with closed-form expressions

Danil Krotkov

(October 23, 2015)

It is widely known that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2 k}}=\frac{(-1)^{k+1}(2 \pi)^{2 k} B_{2 k}}{2(2 k)!}
$$

(where B_{n} denotes n -th Bernoulli number). Ramanujan gives the identity:

$$
\sum_{n=1}^{\infty} \frac{\operatorname{coth}(\pi n)}{n^{4 k-1}}=2^{4 k-2} \pi^{4 k-1} \sum_{m=0}^{2 k} \frac{(-1)^{m+1} B_{2 m} B_{4 k-2 m}}{(2 m)!(4 k-2 m)!}
$$

This paper continues the sequence of infinite series with closed form in terms of π, for example:

$$
\sum_{n=1}^{\infty} \frac{\operatorname{coth}(\pi n) \operatorname{coth}(\pi n \sqrt{i}) \operatorname{coth}\left(\pi \frac{n}{\sqrt{i}}\right)}{n^{5}}=\frac{127 \pi^{5}}{37800}
$$

, where $\sqrt{i}=\frac{1+i}{\sqrt{2}}$

Constructing the sequence

1.Let $\mu_{1}(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$. Then

$$
\mu_{1}(2 n)=\frac{(-1)^{n+1}(2 \pi)^{2 n} B_{2 n}}{2(2 n)!}
$$

(the formula also holds for 0 : $\mu_{1}(0)=-\frac{1}{2}$).
1.1.Then for the generating function σ_{1} holds:

$$
\sigma_{1}(x)=-2 \sum_{n=0}^{\infty} \mu_{1}(2 n) x^{2 n}=1-\sum_{n=1}^{\infty} \frac{2 x^{2}}{n^{2}-x^{2}}
$$

1.2. But $\sigma_{1}(x)=\pi x \cot \pi x$
1.3. Then $\sigma_{1}(i x)=\pi x \operatorname{coth} \pi x=1+\sum_{n=1}^{\infty} \frac{2 x^{2}}{n^{2}+x^{2}}$.
2.Let $\mu_{2}(s)=\sum_{n=1}^{\infty} \frac{\sigma_{1}(i n)}{n^{s}}$. Then

$$
\mu_{2}(4 n)=\sum_{k=0}^{2 n}(-1)^{k+1} \mu_{1}(2 k) \mu_{1}(4 n-2 k)
$$

(the formula also holds for 0 : $\mu_{2}(0)=-\frac{1}{4}$).
2.1.Then for the generating function σ_{2} holds:

$$
\sigma_{2}(x)=-4 \sum_{n=0}^{\infty} \mu_{2}(4 n) x^{4 n}=1-\sum_{n=1}^{\infty} \frac{4 x^{4} \sigma_{1}(i n)}{n^{4}-x^{4}}
$$

2.2. But

$$
-4 \sum_{n=0}^{\infty} \mu_{2}(4 n) x^{4 n}=\left(-2 \sum_{n=0}^{\infty} \mu_{1}(2 n) x^{2 n}\right)\left(-2 \sum_{n=0}^{\infty} \mu_{1}(2 n)(i x)^{2 n}\right)=\sigma_{1}(x) \sigma_{1}(i x)
$$

2.3. Then $\sigma_{2}(\sqrt{i} x)=1+\sum_{n=1}^{\infty} \frac{4 x^{4} \sigma_{1}(i n)}{n^{4}+x^{4}}$.
3.Let $\mu_{3}(s)=\sum_{n=1}^{\infty} \frac{\sigma_{1}(i n) \sigma_{2}(\sqrt{i} n)}{n^{s}}$. Then

$$
\mu_{3}(8 n)=2 \sum_{k=0}^{2 n}(-1)^{k+1} \mu_{2}(4 k) \mu_{2}(8 n-4 k)
$$

(the formula also holds for 0 : $\mu_{3}(0)=-\frac{1}{8}$).
3.1.Then for the generating function σ_{3} holds:

$$
\sigma_{3}(x)=-8 \sum_{n=0}^{\infty} \mu_{3}(8 n) x^{8 n}=1-\sum_{n=1}^{\infty} \frac{8 x^{8} \sigma_{1}(i n) \sigma_{2}(\sqrt{\mathrm{i} n})}{n^{8}-x^{8}}
$$

3.2. But
$-8 \sum_{n=0}^{\infty} \mu_{3}(8 n) x^{8 n}=\left(-4 \sum_{n=0}^{\infty} \mu_{2}(4 n) x^{4 n}\right)\left(-4 \sum_{n=0}^{\infty} \mu_{2}(4 n)(\sqrt{i} x)^{4 n}\right)=\sigma_{2}(x) \sigma_{2}(\sqrt{i} x)$
3.3. Then $\sigma_{3}\left((-1)^{\frac{1}{8}} x\right)=1+\sum_{n=1}^{\infty} \frac{8 x^{8} \sigma_{1}(i n) \sigma_{2}(\sqrt{\mathrm{i}} n)}{n^{8}+x^{8}}$.

Let's prove, that we can do it again and again. And let's prove, that $\mu_{L}\left(2^{L} m\right)$ has closed form in terms of π for every natural L and m.

Proof by induction

Let $\zeta_{L}=(-1)^{1 / 2^{L}}, \pi_{L}(x)=\prod_{k=1}^{L-1} \sigma_{k}\left(\zeta_{k} x\right), \sigma_{L}\left(\zeta_{L} x\right)=1+\sum_{n=1}^{\infty} \frac{2^{L} x^{2^{L}} \pi_{L}(n)}{n^{2^{L}}+x^{2^{L}}}$, and there is an agreement, that the formula also holds for $0: \mu_{L}(0)=-\frac{1}{2^{L}}$, Let's prove that $\mu_{L+1}(s)=\sum_{n=1}^{\infty} \frac{\pi_{L+1}(n)}{n^{s}}$ has closed form for $2^{L+1} m$ for every natural L and m.

$$
\begin{gathered}
\mu_{L+1}\left(2^{L+1} m\right)=\sum_{n=1}^{\infty} \frac{\pi_{L+1}(n)}{n^{2^{L+1} m}}=\sum_{n=1}^{\infty} \frac{\pi_{L}(n)}{n^{2^{L+1} m}}\left(1+\sum_{N=1}^{\infty} \frac{2^{L} n^{2^{L}} \pi_{L}(N)}{N^{2^{L}}+n^{2^{L}}}\right)= \\
=\mu_{L}\left(2^{L+1} m\right)+2^{L} \sum_{N=1}^{\infty} \pi_{L}(N) \sum_{n=1}^{\infty} \frac{\pi_{L}(n)}{n^{2^{L}(2 m-1)}\left(n^{2^{L}}+N^{2^{L}}\right)}= \\
=\mu_{L}\left(2^{L+1} m\right)+2^{L} \sum_{N=1}^{\infty} \frac{\pi_{L}(N)}{N^{2^{L}}} \sum_{n=1}^{\infty} \frac{\pi_{L}(n)\left(n^{2^{L}}+N^{2^{L}}-n^{2^{L}}\right)}{n^{2^{L}(2 m-1)}\left(n^{2^{L}}+N^{2^{L}}\right)}=\ldots= \\
=2 \mu_{L}\left(2^{L+1} m\right)+2^{L} \sum_{k=1}^{2 m-1}(-1)^{k+1} \mu_{L}\left(2^{L} k\right) \mu_{L}\left(2^{L}(2 m-k)\right)-\sum_{N=1}^{\infty} \frac{\pi_{L+1}(N)}{N^{2^{L+1} m}}
\end{gathered}
$$

That's why

$$
\mu_{L+1}\left(2^{L+1} m\right)=\mu_{L}\left(2^{L+1} m\right)+2^{L-1} \sum_{k=1}^{2 m-1}(-1)^{k+1} \mu_{L}\left(2^{L} k\right) \mu_{L}\left(2^{L}(2 m-k)\right)
$$

Using the agreement for $\mu_{L}(0)$, we finally gain

$$
\mu_{L+1}\left(2^{L+1} m\right)=2^{L-1} \sum_{k=0}^{2 m}(-1)^{k+1} \mu_{L}\left(2^{L} k\right) \mu_{L}\left(2^{L}(2 m-k)\right)
$$

So, if $\mu_{L}\left(2^{L} m\right)$ has closed form in terms of $\pi, \mu_{L+1}\left(2^{L+1} m\right)$ has it too. This way we gain a new class of series with closed form in terms of π. But for large L and m the construction loses its beauty.
Also for σ_{2}, we can gain another nontrivial result: If we take σ_{1} and change $\sigma_{1}(i n)$ to $\sigma_{1}(i n x)$ inside μ_{2}, we gain the Ramanujan's formula

$$
\sum_{n=1}^{\infty} \frac{\operatorname{coth}(\pi n x)+x^{2} \operatorname{coth}\left(\frac{\pi n}{x}\right)}{n^{3}}=\frac{\pi^{3}}{90 x}\left(x^{4}+5 x^{2}+1\right)
$$

Its analogue for σ_{2} and μ_{3} is going to be

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{\operatorname{coth}(\pi n)}{n^{5}}\left(\operatorname{coth} \frac{\pi n x}{\sqrt{i}} \operatorname{coth} \pi n x \sqrt{i}+x^{4} \operatorname{coth} \frac{\pi n}{x \sqrt{i}} \operatorname{coth} \frac{\pi n \sqrt{i}}{x}\right)= \\
=\frac{\pi^{5}}{56700 x^{2}}\left(19 x^{8}+343 x^{4}+19\right)
\end{gathered}
$$

