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1 Introduction

After a good look on the Mathematics Unlimited—2001 and Beyond [5], which
addresses the question of the future of Mathematics in the new millennium, it
is impossible not to get the deep impression that Computing will be an integral
part of many branches of Mathematics. If it is true that in the XXst century
Mathematics has contributed, in a fundamental way, to technology, now, in the
XXIst century, the converse seems to be also a possibility. For perspectives on
the role of Computing in Mathematics (and the other way around) see [2, 4, 9].

Many powerful and versatile Computer Algebra Systems are available nowa-
days, putting at our disposal sophisticated environments of mathematical and
scientific computing. They comprise both numerical and symbolic computation
through high-level and expressive languages, close to the mathematical one. A

∗To appear in the 2003 December issue of the Smarandache Notions Journal.
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large quantity of mathematical knowledge is already available in these scientific
systems, providing efficient mathematical methods to perform the desired cal-
culations. This has two important implications: they spare one a protracted
process of programming and debugging, so common to the more conventional
computer languages; they permit us to write few lines of code, and simpler pro-
grams, more declarative in nature. Our claim is that explorations with such
tools can develop intuition, insight, and better qualitative understanding of the
nature of the problems. This can greatly assist the proof of mathematical results
(see an example in Section § 2.1 below).

It is our aim to show that computer-assisted algebra can provide insight and
clues to some open questions related to special sequences in Number Theory.
Number Theory has the advantage of being easily amenable to computation
and experimentation. Explorations with a Computer Algebra System will allow
us to produce results and to formulate conjectures. We illustrate our approach
with the mathematics Maple system (all the computational processing was car-
ried with Maple version 8, on an AMD Athlon(TM) 1.66 GHz machine), and
with some of the problems proposed by the Romanian mathematician Florentin
Smarandache.

Maple was originated more than two decades ago, as a project of the Sym-
bolic Computation Group of the University of Waterloo, Ontario. It is now a
registered trademark product of Waterloo Maple Inc. We refer the reader to
[19, 13] for a gentle introduction to Maple. For a good account on the Smaran-
dache collection of problems, and for a biography of F. Smarandache, see [10].

We invite and exhort readers to convert our mathematical explorations in
the language of their favorite Computer Algebra System; to optimize the algo-
rithms (we have followed the didactic approach, without any attempt of code
optimization); and to obtain the results for themselves. The source be with you.

2 Smarandache Digital Subsequences

We begin by considering sequences of natural numbers satisfying some given
property together with all their digits.

2.1 Smarandache p-digital subsequences

We are interested in the following Smarandache p-digital subsequences. Let
p ≥ 2. From the sequence {np}, n ∈ N0, we select those terms whose digits
are all perfect p-powers. For p = 2 we obtain the Smarandache square-digital
subsequence: we select only those terms of the sequence

{

n2
}

∞

n=0
whose digits

belong to the set {0, 1, 4, 9}. With the Maple definitions

> pow := (n,p) -> seq(i^p,i=0..n):

> perfectPow := (n,p) -> evalb(n = iroot(n,p)^p):

> digit := (n,num) -> irem(iquo(num,10^(length(num)-n)),10):

> digits := n -> map(digit,[$1..length(n)],n):

> digPerfectPow :=
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> (n,p) -> evalb(select(perfectPow,digits(n),p) = digits(n)):

the Smarandache square-digital subsequence is easily obtained:

> ssds := n -> select(digPerfectPow,[pow(n,2)],2):

We now ask for all the terms of the Smarandache square-digital subsequence
which are less or equal than 100002:

> ssds(10000);

[0, 1, 4, 9, 49, 100, 144, 400, 441, 900, 1444, 4900, 9409, 10000, 10404, 11449,

14400, 19044, 40000, 40401, 44100, 44944, 90000, 144400, 419904, 490000,

491401, 904401, 940900, 994009, 1000000, 1004004, 1014049, 1040400,

1100401, 1144900, 1440000, 1904400, 1940449, 4000000, 4004001, 4040100,

4410000, 4494400, 9000000, 9909904, 9941409, 11909401, 14010049, 14040009,

14440000, 19909444, 40411449, 41990400, 49000000, 49014001, 49140100,

49999041, 90440100, 94090000, 94109401, 99400900, 99940009, 100000000]

In [3, 18] one finds the following question:

“Disregarding the square numbers of the form N × 102k, k ∈ N,
N also a perfect square number, how many other numbers belong
to the Smarandache square-digital subsequence?”

From the obtained 64 numbers of the Smarandache square-digital subsequence,
one can see some interesting patterns from which one easily guess the answer.

Theorem 1. There exist an infinite number of terms on the Smarandache
square-digital subsequence which are not of the form N × 102k, k ∈ N, N a
perfect square number.

Theorem 1 is a straightforward consequence of the following Lemma.

Lemma 2. Any number of the form
(

10k+1 + 4
)

×10k+1+4, k ∈ N0 (144, 10404,
1004004, 100040004, ...), belong to the Smarandache square-digital subsequence.

Proof. Lemma 2 follows by direct calculation:

(

10k+1 + 2
)2

=
(

10k+1 + 4
)

× 10k+1 + 4 .

We remark that from the analysis of the list of the first 64 terms of the
Smarandache square-digital subsequence, one easily finds other possibilities to
prove Theorem 1, using different but similar assertions than the one in Lemma 2.
For example, any number of the form

(

10k+2 + 14
)

×10k+2+49, k ∈ N0 (11449,
1014049, 100140049, ...), belong to the Smarandache square-digital subsequence:

(

10k+2 + 7
)2

=
(

10k+2 + 14
)

× 10k+2 + 49 .
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Other possibility, first discovered in [12], is to use the pattern
(

4 × 10k+1 + 4
)

×
10k+1 +1, k ∈ N0 (441, 40401, 4004001, ...), which is the square of 2×10k+1+1.

Choosing p = 3 we obtain the Smarandache cube-digital subsequence.

> scds := n -> select(digPerfectPow,[pow(n,3)],3):

Looking for all terms of the Smarandache cube-digital subsequence which are
less or equal than 100003 we only find the trivial ones:

> scds(10000);

[0, 1, 8, 1000, 8000, 1000000, 8000000, 1000000000, 8000000000, 1000000000000]

We offer the following conjecture:

Conjecture 3. All terms of the Smarandache cube-digital subsequence are of
the form D × 103k where D ∈ {0, 1, 8} and k ∈ N0.

Many more Smarandache digital subsequences have been introduced in the
literature. One good example is the Smarandache prime digital subsequence,
defined as the sequence of prime numbers whose digits are all primes (see [18]).

Terms of the Smarandache prime digital subsequence are easily discovered
with the help of the Maple system. Defining

> primeDig := n -> evalb(select(isprime,digits(n)) = digits(n)):

> spds := n -> select(primeDig,[seq(ithprime(i),i=1..n)]):

we find that 189 of the first 10000 prime numbers belong to the Smarandache
prime digital subsequence:

> nops(spds(10000));

189

2.2 Smarandache p-partial digital subsequences

The Smarandache p-partial digital subsequence is defined by scrolling through
a given sequence {an}, n ≥ 0, defined by some property p, and selecting only
those terms which can be partitioned in groups of digits satisfying the same
property p (see [3]). For example, let us consider {an} defined by the recurrence
relation an = an−1 + an−2. One gets the Lucas sequence by choosing the
initial conditions a0 = 2 and a1 = 1; the Fibonacci sequence by choosing a0 =
0 and a1 = 1. The Smarandache Lucas-partial digital subsequence and the
Smarandache Fibonacci-partial digital subsequence are then obtained selecting
from the respective sequences only those terms n for which there exist a partition
of the digits in three groups (n = g1g2g3) with the sum of the first two groups
equal to the third one (g1 + g2 = g3).

In [3, 17, 16] the following questions are formulated:

“Is 123 (1+2 = 3) the only Lucas number that verifies a Smaran-
dache type partition?”
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“We were not able to find any Fibonacci number verifying a
Smarandache type partition, but we could not investigate large num-
bers; can you?”

Using the following procedure, we can verify if a certain number n fulfills
the necessary condition to belong to the Smarandache Lucas/Fibonacci-partial
digital subsequence, i.e., if n can be divided in three digit groups, g1g2g3, with
g1+g2=g3.

> spds:=proc(n)

> local nd1, nd2, nd3, nd, g1, g2, g3:

> nd:=length(n);

> for nd3 to nd-2 do

> g3:=irem(n,10^nd3);

> if length(g3)*2>nd then break; fi;

> for nd1 from min(nd3,nd-nd3-1) by -1 to 1 do

> nd2:=nd-nd3-nd1;

> g1:=iquo(n,10^(nd2+nd3));

> g2:=irem(iquo(n,10^nd3), 10^nd2);

> if g2>=g3 then break;fi;

> if g1+g2=g3 then printf("%d (%d+%d=%d)\n",n,g1,g2,g3);fi;

> od;

> od:

> end proc:

Now, we can compute the first n terms of the Lucas sequence, using the
procedure below.

> lucas:=proc(n)

> local L, i:

> L:=[2, 1]:

> for i from 1 to n-2 do L:=[L[],L[i]+L[i+1]]:od:

> end proc:

With n = 20 we get the first twenty Lucas numbers

> lucas(20);

[2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349]

Let L be the list of the first 6000 terms of the Lucas sequence:

> L:=lucas(6000):

(elapsed time: 1.9 seconds) 1

It is interesting to remark that the 6000th element has 1254 digits:

1The most significant time calculations are showed, in order to give an idea about the
involved computation effort.
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> length(L[6000]);

1254

The following Maple command permit us to check which of the first 3000
elements belong to a Smarandache Lucas-partial digital subsequence.

> map(spds, L[1..3000]):

123 (1+2=3)

20633239 (206+33=239)

(elapsed time: 7h50m)

As reported in [15], only two of the first 3000 elements of the Lucas sequence
verify a Smarandache type partition: the 11th and 36th elements.

> L[11], L[36];

123, 20633239

We now address the following question: Which of the next 3000 elements of
the Lucas sequence belong to a Smarandache Lucas-partial digital subsequence?

> map(spds, L[3001..6000]):

(elapsed time: 67h59m)

The answer turns out to be none: no number, verifying a Smarandache type
partition, was found between the 3001th and the 6000th term of the Lucas se-
quence.

The same kind of analysis is easily done for the Fibonacci sequence. We compute
the terms of the Fibonacci sequence using the pre-defined function fibonacci:

> with(combinat, fibonacci):

> [seq(fibonacci(i), i=1..20)];

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765]

Although the 6000th Fibonacci number is different from the 6000th Lucas
number

> evalb(fibonacci(6000) = L[6000]);

false

they have the same number of digits

> length(fibonacci(6000));
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1254

In order to identify which of the first 3000 Fibonacci numbers belong to the
Smarandache Fibonacci-partial digital subsequence, we execute the following
short piece of Maple code:

> map(spds, [seq(fibonacci(i), i=1..3000)]):

832040 (8+32=040)

(elapsed time: 8h32m)

This is in consonance with the result reported in [15]: only one number,
among the first 3000 numbers of the Fibonacci sequence, verifies a Smarandache
type partition – the 30th one.

> fibonacci(30);

832040

As before, with respect to the Lucas sequence, we now want to know which
of the next 3000 numbers of the Fibonacci sequence belong to the Smarandache
Fibonacci-partial digital subsequence.

> map(spds, [seq(fibonacci(i), i=3001..6000)]):

(elapsed time: 39h57m)

Similarly to the Lucas case, no number, verifying a Smarandache type par-
tition, was found between the 3001th and the 6000th term of the Fibonacci
sequence.

3 Smarandache Concatenation-Type Sequences

Let {an}, n ∈ N, be a given sequence of numbers. The Smarandache concate-
nation sequence associated to {an} is a new sequence {sn} where sn is given
by the concatenation of all the terms a1, . . ., an. The concatenation operation
between two numbers a and b is defined as follows:

> conc := (a,b) -> a*10^length(b)+b:

In this section we consider four different Smarandache concatenation-type sub-
sequences: the odd, the even, the prime, and the Fibonacci one.

> oddSeq := n -> select(type,[seq(i,i=1..n)],odd):

> evenSeq := n -> select(type,[seq(i,i=1..n)],even):

> primeSeq := n -> [seq(ithprime(i),i=1..n)]:

> with(combinat, fibonacci):

> fibSeq := n -> [seq(fibonacci(i),i=1..n)]:

7



> # ss = Smarandache Sequence

> ss := proc(F,n)

> local L, R, i:

> L := F(n):

> R := array(1..nops(L)): R[1] := L[1]:

> for i from 2 while i <= nops(L) do

> R[i]:=conc(R[i-1],L[i]):

> end do:

> evalm(R):

> end proc:

Just to illustrate the above definitions, we compute the first five terms of the
Smarandache odd, even, prime, and Fibonacci sequences:

> ss(oddSeq,10);

[1, 13, 135, 1357, 13579]

> ss(evenSeq,10);

[2, 24, 246, 2468, 246810]

> ss(primeSeq,5);

[2, 23, 235, 2357, 235711]

> ss(fibSeq,5);

[1, 11, 112, 1123, 11235]

Many interesting questions appear when one try to find numbers among the
terms of a Smarandache concatenation-type sequence with some given property.
For example, it remains an open question to understand how many primes are
there in the odd, prime, or Fibonacci sequences. Are they infinitely or finitely in
number? The following procedure permit us to find prime numbers in a certain
Smarandache sequence.

> ssPrimes := proc(F,n)

> local ar, i:

> ar := select(isprime,ss(F,n)):

> convert(ar,list):

> end proc:

There are five prime numbers in the first fifty terms of the Smarandache odd
sequence;

> nops(ssPrimes(oddSeq,100));

5

five prime numbers in the first two hundred terms of the Smarandache prime
sequence;
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> nops(ssPrimes(primeSeq,200));

5

and two primes (11 and 1123) in the first one hundred and twenty terms of the
Smarandache Fibonacci sequence.

> ssPrimes(fibSeq,120);

[11, 1123]

It is clear that only the first term of the Smarandache even sequence is prime.
One interesting question, formulated in [1, Ch. 2], is the following:

“How many elements of the Smarandache even sequence are twice
a prime?”

A simple search with Maple shows that 2468101214 is the only number twice a
prime in the first four hundred terms of the Smarandache even sequence (the
term 400 of the Smarandache even sequence is a number with 1147 decimal
digits).

> ssTwicePrime := proc(n)

> local ar, i:

> ar := select(i->isprime(i/2),ss(evenSeq,n)):

> convert(ar,list):

> end proc:

> ssTwicePrime(800);

[2468101214]

4 Smarandache Relationships

We now consider the so called Smarandache function. This function S(n) is
important for many reasons (cf. [10, pp. 91–92]). For example, it gives a
necessary and sufficient condition for a number to be prime: p > 4 is prime if,
and only if, S(p) = p. Smarandache numbers are the values of the Smarandache
function.

4.1 Sequences of Smarandache numbers

The Smarandache function is defined in [16] as follows: S(n) is the smallest
positive integer number such that S(n)! is divisible by n. This function can be
defined in Maple by the following procedure:

> S:=proc(n)

> local i, fact:

> fact:=1:

> for i from 2 while irem(fact, n)<>0 do
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> fact:=fact*i:

> od:

> return i-1:

> end proc:

The first terms of the Smarandache sequence are easily obtained:

> seq(S(n),n=1..20);

1, 2, 3, 4, 5, 3, 7, 4, 6, 5, 11, 4, 13, 7, 5, 6, 17, 6, 19, 5

A sequence of 2k Smarandache numbers satisfy a Smarandache k-k additive
relationship if

S(n)+S(n+1)+ · · ·+S(n+k−1) = S(n+k)+S(n+k+1)+ · · ·+S(n+2k−1) .

In a similar way, a sequence of 2k Smarandache numbers satisfy a Smarandache
k-k subtractive relationship if

S(n)−S(n+1)−· · ·−S(n+k−1) = S(n+k)−S(n+k+1)−· · ·−S(n+2k−1) .

In [3, 17] one finds the following questions:

“How many quadruplets verify a Smarandache 2-2 additive rela-
tionship?”

“How many quadruplets verify a Smarandache 2-2 subtractive
relationship?”

“How many sextuplets verify a Smarandache 3-3 additive rela-
tionship?”

To address these questions, we represent each of the relationships by a Maple

function:

> add2_2:=(V,n)->V[n]+V[n+1]=V[n+2]+V[n+3]:

> sub2_2:=(V,n)->V[n]-V[n+1]=V[n+2]-V[n+3]:

> add3_3:=(V,n)->V[n]+V[n+1]+V[n+2]=V[n+3]+V[n+4]+V[n+5]:

We compute the first 10005 numbers of the Smarandache sequence:

> SSN:=[seq(S(i),i=1..10005)]:

(elapsed time: 59m29s)

With the following procedure, we can identify all the positions in the se-
quence V that verify the relationship F .
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> verifyRelation:=proc(F,V)

> local i, VR: VR:=[]:

> for i to nops(V)-5 do

> if F(V,i) then VR:=[VR[], i]: fi:

> od:

> return VR;

> end proc:

We can answer the above mentioned questions for the first 10000 numbers of
the Smarandache sequence.

The positions verifying the Smarandache 2-2 additive relationship are:

> V1:=verifyRelation(add2_2,SSN);

V 1 := [6, 7, 28, 114, 1720, 3538, 4313, 8474]

Similarly, we determine the positions verifying the Smarandache 2-2 sub-
tractive relationship,

> V2:=verifyRelation(sub2_2,SSN);

V 2 := [1, 2, 40, 49, 107, 2315, 3913, 4157, 4170]

and the positions verifying the Smarandache 3-3 additive relationship:

> V3:=verifyRelation(add3_3,SSN);

V 3 := [5, 5182, 9855]

The quadruplets associated with the positions V1 (2-2 additive relationship)
are given by

> map(i->printf("S(%d)+S(%d)=S(%d)+S(%d) [%d+%d=%d+%d]\n",

i,i+1,i+2,i+3,S(i),S(i+1),S(i+2),S(i+3)), V1):

S(6)+S(7)=S(8)+S(9) [3+7=4+6]

S(7)+S(8)=S(9)+S(10) [7+4=6+5]

S(28)+S(29)=S(30)+S(31) [7+29=5+31]

S(114)+S(115)=S(116)+S(117) [19+23=29+13]

S(1720)+S(1721)=S(1722)+S(1723) [43+1721=41+1723]

S(3538)+S(3539)=S(3540)+S(3541) [61+3539=59+3541]

S(4313)+S(4314)=S(4315)+S(4316) [227+719=863+83]

S(8474)+S(8475)=S(8476)+S(8477) [223+113=163+173]

We remark that in M. Bencze’s paper [3] only the first three quadruplets were
found. The quadruplets associated with the positions V2 (2-2 subtractive rela-
tionship) are:

> map(i->printf("S(%d)-S(%d)=S(%d)-S(%d) [%d-%d=%d-%d]\n",

i,i+1,i+2,i+3,S(i),S(i+1),S(i+2),S(i+3)), V2):
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S(1)-S(2)=S(3)-S(4) [1-2=3-4]

S(2)-S(3)=S(4)-S(5) [2-3=4-5]

S(40)-S(41)=S(42)-S(43) [5-41=7-43]

S(49)-S(50)=S(51)-S(52) [14-10=17-13]

S(107)-S(108)=S(109)-S(110) [107-9=109-11]

S(2315)-S(2316)=S(2317)-S(2318) [463-193=331-61]

S(3913)-S(3914)=S(3915)-S(3916) [43-103=29-89]

S(4157)-S(4158)=S(4159)-S(4160) [4157-11=4159-13]

S(4170)-S(4171)=S(4172)-S(4173) [139-97=149-107]

Only the first two and fourth quadruplets were found in [3]. The following three
sextuplets verify a Smarandache 3-3 additive relationship:

> map(i->printf("S(%d)+S(%d)+S(%d)=S(%d)+S(%d)+S(%d)

[%d+%d+%d=%d+%d+%d]\n",i,i+1,i+2,i+3,i+4,i+5,

S(i),S(i+1),S(i+2),S(i+3),S(i+4),S(i+5)), V3):

S(5)+S(6)+S(7)=S(8)+S(9)+S(10) [5+3+7=4+6+5]

S(5182)+S(5183)+S(5184)=S(5185)+S(5186)+S(5187) [2591+73+9=61+2593+19]

S(9855)+S(9856)+S(9857)=S(9858)+S(9859)+S(9860) [73+11+9857=53+9859+29]

Only the first sextuplet was found by M. Bencze’s in [3]. For a deeper analysis
of these type of relationships, see [6, 8].

4.2 An example of a Smarandache partial perfect additive

sequence

Let {an}, n ≥ 1, be a sequence constructed in the following way:

a1 = a2 = 1;
a2p+1 = ap+1 − 1;
a2p+2 = ap+1 + 1 .

The following Maple procedure defines an.

> a:=proc(n)

> option remember:

> if (n=1) or (n=2) then return 1:

> elif type(n, odd) then return a((n-1)/2+1)-1:

> else return a((n-2)/2+1)+1:

> fi:

> end proc:

In [3] the first 26 terms of the sequence are presented as being

> A:=1,1,0,2,-1,1,1,3,-2,0,0,2,1,1,3,5,-4,-2,-1,1,-1,1,1,3,0,2:

One easily concludes, as mentioned in [7], that starting from the thirteenth term
the above values are erroneous. The correct values are obtained with the help
of our procedure:
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> seq(a(i),i=1..26);

1, 1, 0, 2,−1, 1, 1, 3,−2, 0, 0, 2, 0, 2, 2, 4,−3,−1,−1, 1,−1, 1, 1, 3,−1, 1

We prove, for 1 ≤ p ≤ 5000, that {an} is a Smarandache partial perfect additive
sequence, that is, it satisfies the relation

a1 + a2 + · · · + ap = ap+1 + ap+2 + · · · + a2p . (1)

This is accomplished by the following Maple code:

> sppasproperty:=proc(n)

> local SPPAS, p;

> SPPAS:=[seq(a(i),i=1..n)];

> for p from 1 to iquo(n,2) do

> if evalb(add(SPPAS[i], i=1..p)<>add(SPPAS[i], i=p+1..2*p))

> then return false;

> fi;

> od;

> return true;

> end proc:

> sppasproperty(10000);

true

(elapsed time: 11.4 seconds)

We remark that the erroneous sequence A does not verify property (1). For
example, with p = 8 one gets:

> add(A[i],i=1..8)<>add(A[i],i=9..16);

8 6= 10

5 Other Smarandache Definitions and Conjec-

tures

The Smarandache prime conjecture share resemblances (a kind of dual assertion)
with the famous Goldbach’s conjecture: “Every even integer greater than four
can be expressed as a sum of two primes”.

5.1 Smarandache Prime Conjecture

In [3, 17, 16] the so called Smarandache Prime Conjecture is formulated: “Any
odd number can be expressed as the sum of two primes minus a third prime
(not including the trivial solution p = p + q − q when the odd number is the
prime itself)”.
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We formulate a strong variant of this conjecture, requiring the odd number
and the third prime to be different (not including the situation p = k + q − p),
that is, we exclude the situation addressed by Goldbach’s conjecture (where the
even integer 2p is expressed as the sum of two primes k and q).

The number of times each odd number can be expressed as the sum of two
primes minus a third prime, are called Smarandache prime conjecture numbers.
It seems that none of them are known (cf. [3]). Here we introduce the notion
of strong Smarandache n-prime conjecture numbers: the number of possibilities
that each positive odd number can be expressed as a sum of two primes mi-
nus a third prime, excluding the trivial solution and imposing our requirement
that the odd number and the third prime must be different, using all possible
combinations of the first n primes.

Given n, the next procedure determines such numbers for all positive odd
integers less or equal than lim.

> spcn:=proc(lim, n)

> local y, z, i, primos, num, mat:

> mat:=array(1..lim, 1..2,[seq([‘?‘, 0], i=1..lim)]):

> primos:=seq(ithprime(i), i=1..n);

> for i from 1 to n do

> for y in [primos[i..n]] do

> for z in [primos] do

> num:=primos[i]+y-z;

> if (num>=1 and num<=lim and type(num, odd) and

> z<>primos[i] and z<>y and z<>num) then

> if mat[num, 2]=0 then mat[num, 1]:=[primos[i], y, z]:

> fi:

> mat[num, 2]:=mat[num, 2]+1;

> fi:

> od:

> od:

> od:

> for i by 2 to lim do

> if mat[i, 2]=0 then printf("%d=? (0 possibilities)\n", i):

> else printf("%d=%d+%d-%d (%d possibilities)\n", i,

> op(mat[i, 1]), mat[i, 2]):

> fi:

> od:

> evalm(mat):

> end proc:

All positive odd numbers less or equal than 19 can be expressed according to
the conjecture, using only the first six primes.2

> spcn(19,6):

2For each number, only one of the possibilities is showed.
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1=2+2-3 (6 possibilities)

3=5+5-7 (3 possibilities)

5=3+13-11 (2 possibilities)

7=5+5-3 (2 possibilities)

9=3+11-5 (7 possibilities)

11=3+13-5 (3 possibilities)

13=5+11-3 (2 possibilities)

15=5+13-3 (5 possibilities)

17=7+13-3 (3 possibilities)

19=11+11-3 (3 possibilities)

(elapsed time: 0.0 seconds)

As expected, if one uses the first 100 primes, the number of distinct possibilities,
for which each number can be expressed as in our conjecture, increases.

> spcn(19,100):

1=2+2-3 (1087 possibilities)

3=5+5-7 (737 possibilities)

5=3+13-11 (1015 possibilities)

7=3+17-13 (1041 possibilities)

9=3+11-5 (793 possibilities)

11=3+13-5 (1083 possibilities)

13=3+17-7 (1057 possibilities)

15=3+17-5 (770 possibilities)

17=3+19-5 (1116 possibilities)

19=3+23-7 (1078 possibilities)

(elapsed time: 1.8 seconds)

How many odd numbers less or equal to 10000 verify the conjecture?3

> SPCN1:=spcn(10000,600):

(elapsed time: 30m59s)

> n:=0: for i by 2 to 10000 do if SPCN1[i,2]>0 then n:=n+1; fi; od: n;

4406

Using the first 600 primes, only 4406 of the 5000 odd numbers verify the con-
jecture. And if one uses the first 700 primes?

> SPCN2:=spcn(10000,700):

(elapsed time: 49m34s)

3In the follow spcn procedure calls, we removed from its definition the last for loop (spcn
without screen output).
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> n:=0:

> for i by 2 to 10000 do if SPCN2[i,2]>0 then n:=n+1; fi; od;

> n;

5000

Using the first 700 primes, all the odd numbers up to 10000 verify the con-
jecture. We refer the readers interested in the Smarandache prime conjecture
to [14].

5.2 Smarandache Bad Numbers

“There are infinitely many numbers that cannot be expressed as the difference
between a cube and a square (in absolute value). They are called Smarandache
Bad Numbers(!)” – see [3].

The next procedure determines if a number n can be expressed in the form
n = |x3 − y2| (i.e., if it is a non Smarandache bad number), for any integer x

less or equal than xmax. The algorithm is based in the following equivalence

n = |x3 − y2| ⇔ y =
√

x3 − n ∨ y =
√

x3 + n .

For each x between 1 and xmax, we try to find an integer y satisfying y =√
x3 − n or y =

√
x3 + n, to conclude that n is a non Smarandache bad number.

> nsbn:=proc(n,xmax)

> local x, x3:

> for x to xmax do

> x3:=x^3;

> if issqr(x3-n) and x3<>n then return n[x, sqrt(x3-n)];

> elif issqr(x3+n) then return n[x, sqrt(x3+n)]; fi;

> od:

> return n[‘?‘, ‘?‘]

> end proc:

F. Smarandache [16] conjectured that the numbers 5, 6, 7, 10, 13, 14, . . . are prob-
ably bad numbers. We now ask for all the non Smarandache bad numbers which
are less or equal than 30, using only the x values between 1 and 19. We use
the notation nx,y to mean that n = |x3 − y2|. For example, 12,3 means that
1 = |23 − 32| = |8 − 9|.

> NSBN:=map(nsbn,[$1..30],19);

NSBN := [12,3, 23,5, 31,2, 42,2, 5?,?, 6?,?, 72,1, 81,3, 93,6, 10?,?,

113,4, 1213,47, 1317,70, 14?,?, 151,4, 16?,?, 172,5, 183,3, 195,12, 206,14,

21?,?, 223,7, 233,2, 241,5, 255,10, 263,1, 27?,?, 282,6, 29?,?, 3019,83]

16



As proved by Maohua Le in [11], we have just shown that 7 and 13 are non
Smarandache bad numbers: 7 = |23 − 12| and 13 = |173 − 702|. The possible
Smarandache bad numbers are:

> select(n->evalb(op(1,n)=‘?‘), NSBN);

[5?,?, 6?,?, 10?,?, 14?,?, 16?,?, 21?,?, 27?,?, 29?,?]

Finally, we will determine if any of these eight numbers is a non Smarandache
bad number, if one uses all the x values up to 108.

> map(nsbn,[5,6,10,14,16,21,27,29],10^8);

[5?,?, 6?,?, 10?,?, 14?,?, 16?,?, 21?,?, 27?,?, 29?,?]

(elapsed time: 14h30m)

From the obtained result, we conjecture that 5, 6, 10, 14, 16, 21, 27, and 29, are
bad numbers. We look forward to readers explorations and discoveries.
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