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Abstract. Neutrosophic set is a powerful general formal frammd that has been
proposed in 1995 by Smarandache. The paper aigivdca computational algorithm to
solve a multi-objective linear programming problgfMOLPP) using Neutrosophic
optimization method. The developed algorithm haenb@lustrated by a production
planning problem. We made a comparative study ofin@ solution between
intuitionistic fuzzy optimization and Neutrosophiptimization technique.
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1. Introduction

The concept of fuzzy sets was introduced by Zadel965 [1]. The fuzzy sets and fuzzy
logic have been applied in many real applicatiankandle uncertainty. The traditional
fuzzy sets uses one real vajug(x) €[0,1] to represents the truth membership function
of fuzzy set A defined on universe X. Sometimeg(x) it self is uncertain and hard to
be defined by a crisp value. So the concept ofvatevalued fuzzy sets was proposed [2]
to capture the uncertainty of truth membershipsdme applications we should consider
not only the truth membership supported by the entidut also the falsity membership
against by the evident. That is beyond the scofezay sets and interval valued fuzzy
sets. In 1986, Atanassov [3,5] devolved the ideataftionistic fuzzy set A characterized
by the membership degreg(x) €[0,1] as well as hon-membership degrgéx) €[0,1]
with some restriction & u,(x)+v,(x) < 1. Therefore certain amount of indeterminacy 1
—(ua(x)+v4(x)) remains by default. However one may also consttler possibility
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us(x) +vy(x)> 1, so that inconsistent beliefs are also alloWwedeutrosophic sets

indeterminacy is quantified explicitly and truth migership, indeterminacy membership
and falsity membership are independent. Neutrosogkt (NS) was introduced by
Smarandache in 1995 [4] which is actually geneatibn of different types of FSs and
IFSs. In 1978 a paper Fuzzy linear programming wikieral objective functions has
been published by Zimmermatfl]. In 2007, Jana and Rd9] have studied multi-

objective intuitionistic fuzzy linear programmingrgblem and its application in

Transportation model. The motivation of the presstudy is to give computational
algorithm for solving multi-objective linear prognaing problem by single valued
neutrosophic optimization approach. We also aimstady the impact of truth

membership, indeterminacy membership and falsitymbeship functions in such
optimization process and thus have made comparsatiidy in intuitionistic fuzzy and

neutrosophic optimization technique.

2. Some preiminaries

Definition 1. (Fuzzy set) [1]

Let X be a fixed set. A fuzzy set A of X is an alijdaving the fornA = {(x,u4 (X)), X€
X} where the functioni,(x) : X — [0, 1] define the truth membership of the element
€ X to the set A.

Definition 2. (Intuitionistic fuzzy set) [3]

Let a set X be fixed. An intuitionistic fuzzy satl&S A* in X is an object of the forma!
={< X, 1y (x),v4(x) > /x € X} whereu, (x) : X— [0, 1] andv, (x) : X— [0, 1] define
the truth-membership and falsity-membership re$pegt for every element of 8 X ,
O<pu(x)+v(x) <1

Definition 3. (Neutr osophic set) [4]

Let X be a space of points (objects) and X. A neutrosophic set” in X is defined by a
Truth-membership functiqq, (x), an indeterminacy-membership functieg(x) and a
falsity-membership functionv,(x) and having the formd™ ={< X, u, (x), g4(x),
V(%) > /x € X} uy (%), 04(x) and v, (x) are real standard or non-standard subsets of

10, I'[. that is

fa (x) 1 X110, I'[
ou(x) : X=10,1[
vy (x): X->10, I'[

There is no restriction on the sumugf(x), o4 (x) and v, (x), so
0< supps (x)+ Supa, (x)+ supvy(x) < 3

Definition 4. (Single valued Neutr osophic sets) [6]
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Let X be a universe of discourse. A singleuedl neutrosophic sed™ over X is an
object having the formA™ ={< X, i, (x), 04(x),v4(x) > /x € X} whereu, (x) : X- [0,
1], 04(x) : X—[0, 1] and/, (x) : X— [0, 1] with O< py (%) + g4(x) + v, (x) <3 for all
X EX.

Example 1. Assume that X = [XXp, X3]. X, is capability, x is trustworthiness and; s
price. The values of xx.and % are in [0, 1]. They are obtained from the quest#re of
some domain experts, their option could be a degfetgood service”, a degree of
indeterminacy and a degree of “poor servieB'is a single valued neutrosophic set of X
defined by

A" =(0.3,0.4,0.5)/x; + (0.5,0.2,0.3)/x, + (0.7,0.2,0.2)/x3.B™ is a single valued
neutrosophic set of X defined B=(0.6,0.1,0.2)/x; +(0.3,0.2,0.6)/x, + (0.4,0.1,0.5)/x3

Definition 5. (Complement) [6] The complement of a single valued neutrosophic set
A"is denoted by &) and is defined by

Hecamy () =van(x)

O'C(A'n)(x) =1- O'An(x)

Veaany(x) = pan(x) forall xin X.

Example 2. let A" be a single valued neutrosophic set defined imi¥a 1. Then,
c(A™) =(0.5,0.6,0.3)/x; +(0.3,0.8,0.5)/x, +0.2,0.8,0.7)/Xs.

Definition 6. (Union) [6] The union of two single valued neutrosophic gBtsandB™is

a single valued neutrosophic €&t, written asC"= A™ U B™, whose truth-membership,
indeterminacy-membership and falsity-membershigtions are given by

Hecay (%) = max fis (x),up (X)),

oca)(X)=maxoy (x),05 (%)),

Veay(®) = min (v4(x),vg(x)) for all x in X

Example 3. Let A and B be two single valued neutrosophis skefined in Example 1.
Then, AUB =(0.6,0.4,0.2)/x; +(0.5,0.2,0.3)/x, +(0.7,0.2,0.2)/Xa.

Definition 7 (I nter section) [6] The Intersection of two single valued neutrosoieits A
and B is a single valued neutrosophic set C, writ's C = An B, whose truth-
membership, indeterminacy-membership and falsityabership functions are are given

by

Becay(x) = min @y (x),up(x))
Ocay(x) = min (4 (x),05(X))Veay(x) = max f,(x),vp(x)) for all xin X

Example 4. Let A and B be two single valued neutrosophts siefined in Example 1.
Then, An B =(0.3,0.1,0.5)/x; + (0.3,0.2,0.6)/%, + (0.4,0.1,0.5)/Xs.
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Here, we notice that by the definition of complemamion and intersection of single
valued neutrosophic sets, single valued neutrosopdtis satisfy the most properties of
classic set, fuzzy set and intuitionistic fuzzy. seame as fuzzy set and intuitionistic
fuzzy set, it does not satisfy the principle of die@exclude.

3. Multi-objective linear programming problem (MOLPP)
A general multi-objective linear programming prahlevith p objectives, g constraints
and n decision variables may be taken in the fatigvform

Maximizef;(x) =¢; X
Maximizef,(x) =c, X
Maximize f,(x) = ¢, X
Subjectto AX b and %0

where C=¢q1,Cizy e ven e, Ci) fOr i=1,2,......00. p.
T
A= [ai]qn X = (X1, X2, e e e, X)) T, Dby, by, e, by)
for j=1,2,......... q;i=1,2,...... n.

4. Neutrosophic decision making

Decision making is a process of solving the probiewolving pursuing the goals under
constraints. The outcome is a decision which shulsh action. Decision making plays
an important role in an economic and business, ganant sciences, engineering and
manufacturing, social and political science, bigiand medicine, military, computer
science etc. It is difficult process due to factdilee incomplete and imprecise
information which tend to be presented in real Bfauations. In the decision making
process, our main target is to find the value ftbmselected set with the highest degree
of membership in the decision set and these vaupport the goals under constraints
only. But there may be situations arise where sealaes from selected set cannot
support i.e. such values strongly against the goaltder constraints which are non-
admissible. In this case we find such values froenselected set with last degree of non-
membership in the decision sets. Intuitionisticzfuzsets can only handle incomplete
information not the indeterminate information anddnsistent information which exists
commonly in belief system. In neutrosophic setetedminacy is quantified explicitly
and truth-membership, indeterminacy-membership afadsity-membership are
independent. So it is natural to adopt for thappae the value from the selected set with
highest degree of truth-membership, indeterminaeyabership and least degree of
falsity-membership on the decision set. These factadicate that a decision making
process takes place in neutrosophic environment.

Consider the multi-objective linear programminglgdem as
Maximize {f; (x), f2 (%), . ver o fp(x)} (1)

84



A Multi-Objective Production Planning Problem BasetdNeutrosophic Linear
Programming Approach

Subjectto AXX b
where A = @qn, X= (X3, %z oo oo %), 0= (by, by o bg)

Now the decision seb", a conjunction of Neutrosophic objectives and traists is
defined as

D" =(N%_, Gi") NNy 6= LG upn (6), apn (), vpn (x))}

HerQl’D‘n(X)zmin(ﬂéln(x),Mézn(x), .,uépn(x); ,uéln(x),,uézn(x), ....,uéqn(x) )
forallx € X
opn(x)=min (aéln(x), aézn(x), ....aépn(x); aéln(x), aézn(x), ....aéqn(x))
forallx € X

vgn(x)=max

véln(x),vézn(x), ....v(;pn(x); vﬁln(x),vézn(x), ....véqn(x) )forallx € X

whereugn(x), on(x), vpn(x) are truth membership function, Indeterminacy
membership function, falsity membership function oNeutrosophic decision set
respectively. Now using the neutrosophic optimaatihe problem (1) is transformed to
the linear programming problem as

Max a (2)
Min B

Maxy

Such that

,Llékn(X) a0}

,Llékn(X) >0

aékn(x) >y

Uc'k"(x) 2y

vékn(x) <B

Vékn(X) <p fork=1,2,........ p.
a+p+y<3

a>p

o=y

a B,y €0, 1]

Now this linear programming problem (2) daneasily solved by simplex method
to give solution of multi-objective linear progranmg problem (1) by neutrosophic
optimization approach.
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5. Computational algorithm

A. Algorithm 1 (Linear member ship functions)

Step 1. Pick the first objective function and solve itasingle objective subject to the
constraints. Continue the process k-times for fedéht objective functions. Find value
of objective functions and decision variables.

Step 2. To build membership functions, goals and toleeanshould be determined at
first. Using the ideal solutions, obtained in sfepre find the values of all the objective
functions at each ideal solution and construct @fayaatrix as follows:

[fl*(xl)fz(xl) oo v e fp (A1) 1
O () e o ()
L OGP o fy (2P)

Step 3.From step-2 we find the upper and lower boundsachebjective functions.
Ut = max{fi(x,} and L,* = min{f;(x,*)} where ¥r<k
For truth membership of objectives.

Step 4. We represents upper and lower bounds for indetereyiand falsity membership
of objectives as follows:

L =L and U = U= (U LM )
Uka :Ukﬂ and Lka = Ukﬂ' t (Ukﬂ — Ukﬂ)

Here) and t are to predetermined real number in (0, 1).
Step 5. Define truth membership, Indeterminacy membershiglsity membership
functions as follows:

. 9 if filx) < L*

we(fe() = {550 if L < () < U
1 if fi(x) = Up”

-1, 0 if fi(x) < Ly°

(0 = TS if L < fild) < U
1 if fir(x) = Uy°

U fe () 1 if filx) < Ly”

(i) = P if LY < fil) < U
0 if fi(x) = U”
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Step 6. Now neutrosophic optimization method for MOLP gdesh gives an equivalent
linear programming problem as:

Max a+f+y 3
Such that
e (fie()za, o (fir(x)) 2y, vie(fu(¥))<Bfork=1,2,3, ...,... p
a+p+y<3,
a>p, a>y
a,B,y €0, 1]
AX <b, x>0,
where A = @qn, X= (X3, %z, oo oo %)y 0= (by, by o by )
k=1,2,....... p; j=1,2,........ q
which is reduced to equivalent linear-programmingofem as
Max a+f+y 4
Such that

fi) = U — L") o= Li*
fi@) = U —L%) v = Li°
fi) + U — L") B=U,”
a+f+y<3

a>f

o=y

a,B,y€[0, 1]

AX <b, x>0,

where A= (@q.n, X= (X1, %2, e vee oo, %), D =(by, by, v e, by)
k=1,2,....... p; j=1,2,....9.

B. Algorithm 2 (Non-linear member ship function)
Repeat steps 1 to 4 and construct pay off matrix.

Step 5. Assume that solutions so far computed by algoritbihow exponential function
for Truth membership, hyperbolic function for Fatsimembership and exponential
function for Indeterminacy membership function gi\as

if filx) < L*

we(fe(x) ={1—Exp{—W%} if L < fi®) < Uy*
1 if fi(x) = U"

o GO—L” 0 if filx) < L
o) ={Exp (LTEHE)  if L < fiulo) < U
1 if fi(x) = U°
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1 if fulx)< Ly”
vie(fie®) = 3+35tanh (8§51~ () if LY < fuld) < U
0 if fi(x) = Uy”

whereW¥, §, are nonzero parameters prescribed by the deaisider.

Step 6. Now neutrosophic optimization method for MOLBIglem with the exponential
Truth membership, hyperbolic Falsity membership amgonential indeterminacy
membership functions gives the equivalent lineaggmming problem:
Max a+f+y 5)
Such that
e (fe(x))z0, o (fie(x)) =7,
vie(fe ()< B
a+P+y<3
a>f
o=y
a,B,y €0, 1]
AX <b

where A = (@qn, X= (X3, %z e oo %)y 0= (by, by o e bg)

For solution convenience the above problem is toamsed to
Maximize 6 +&—n (6)

Subject to fi (x)- 2D > g i
Fe(x) - L > Ui’ +Li”
Sk 2
fie@)- U — L) = Ly°
wheref = - log (1-0), &£ = logy, n = -tanh™! (2B -1),¥ =4,5;, = °

UL
0+&-m<3
0>¢&
0>n
0,6, n € [0, 1]
AX Db
T
where A= (@q.n, X= (%1, %2, e vee oo, %), D =(by, by, v e, by )

5. lllustr ated example

Production planning problem

Consider a park of six machine types whose capaditie to be devoted to production of
three products. A current capacity portfolio is iklde, measured in machine hours per

week for each machine capacity unit priced accgrttinmachine type. Necessary data is
summarized below in table 1.
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Table 1. Physical parameter values

Machine typ Machine Unit price Product
($100 per hour), hours X1 X2 X3
Milling 140 0.7t 12 17 0
machine 1000 0.60 3 9 8
Lathe 1750 0.35 10 13 15
Grinder 1325 0.50 6 0 16
Jig saw 900 1.15 0 9.5 7
Drill press 1075 0.65 12 9.5 4
Band saw

Total capacity $4658.7!

cost

Let X1, X2, X3 denote three products, then the complete matheahdtirmulation of the
above mentioned problem as a Multi-objective Lineaygramming problem is given as:

Max f; (x)= 50% + 100% + 17.5%(profit)
Max f,(x) 92x + 75% + 50x%(quality)
Max f3(x) 25x + 100% + 75x%(worker satisfaction)
Subiject to the constraints
12x + 17% <1400
3x; + 9% +8x3 < 1400
10x + 13% + 15% < 1750
6x; + 16% < 1325
X1, X2y X3 2 0.

Table2: Positiveideal solution

EVEIE
Max f; 8041.14 10020.33  9319.25
Max f, 5452.63  10950.59  5903.00
Max f; 7983.60  10056.99  9355.90

Table 3: Comparison of optimal solutions by IFO and NSChteque.

Optimization Optimal Optimal Aspiration Sum of
technigues Decision Objective levels optimal
Variables Functions of truth, falsity| objective
x50 x5 15655 | and values
indeterminacy
membership
functions
Intuitionistic ~ fuzzy| 62.8z, 7673.: a =0.75 26903.51
optimization(IFO) 38.005, 10721.81 B’ = 0.056
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41.84 8508.t
Proposec 64.0), 7747.4° a'=0.73 27135.8!
neutrosophic 38.16, 10839.42 B'=0.077
optimization(NSO) | 41.77 8549.00 y'=0.34
Algorithm -1
Proposec 48.9303! 7769.6« a' = 0.4071 27227.65
neutrosophic 45.41035 10341.91 p'=0.50
optimization(NSO) | 44.69078 9116.10 y'=0.999
Algorithm-2

Table 3 shows that Neutrosophic optimization giveer result than Intuitionistic fuzzy
optimization.

5. Conclusions

In this paper, we presents simple Neutrosophiaropation approach to solve Multi-
objective linear programming problem.it can be @ds®d as an extension of fuzzy and
intuitionistic fuzzy optimization .Also lower andpper bounds for the indeterminacy
membership functions are defined. The empiricaistebow that optimal solutions of
Neutrosophic optimization approach can satisfyabjective function with higher degree
than the solutions of fuzzy and intuitionistic fyzzprogramming approach. The results
thus obtained also reveal that neutrosophic opétiin by proposed algorithm- 2 using
non-linear Truth, Indeterminacy, Falsity membershipctions give a better result than
neutrosophic optimization by proposed algorithmdsing linear Truth, Indeterminacy,
Falsity membership functions.
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