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1. Introduction

Due to the increased volume of information availablephysicians from modem medical
technologies, medicine diagnosis contains a lot of nimete, uncertainty, and inconsistent
information, which is important information of medicdilagnosis problems. A symptom usually
implies a lot of incomplete, uncertainty, and inconsistefdirmation for a disease, hence the
incomplete, uncertainty and inconsistent informatibaracterizes a relation between symptoms and
diseases. Thus we work with the uncertainties amednsistencies to lead us to proper decision
making in medicine. In most of the medical diagnosabfems, there exist some patterns, and the
experts make decision based on the similarity betwedgknown sample and the basic diagnosis
patterns. In some practical situations, there is theilplitss of each element having different
truth-membership, indeterminacy-membership, and itfatsembership functions. Therefore,
Smarandache [1] originally proposed the concept adarasophic set from philosophical point of
view. A neutrosophic s& in a universal seX is characterized independently by a truth-memlyersh
function Ta(X), an indeterminacy-membership functibg(x), and a falsity-membership function
Fa(X). The functionsTa(X), Ia(X), Fa(X) in X are real standard or nonstandard subset®ofl], i.e.,
Ta(): X = 170, I, 1a(¥): X = 170, I, and Fa(X): X - 170, 1. However, the domain of the
definition and range of the functionBs(X), 1a(X) and Fa(X) in a neutrosophic seA is the
non-standard unit intervalQ, 1'[, it is only used for philosophical applications, esakyc when
distinction is required between absolute and relativihfialsehood/indeterminacy. To easily use in
technical applications of the neutrosophic set, the dowfathe definition and range di(x), [a(X)

andFa(x) can be restrained to the normal standard real ueitvial [0, 1]. As a simplified form of



the neutrosophic set, a simplified neutrosophic setig2fhe appropriate choice as it is easily

expresses and deals with incomplete, uncertainty,irmuhsistent information in real science and

engineering fields. Simplified neutrosophic sets inelgihgle valued neutrosophic sets (SVNSs)

and interval neutrosophic sets (INSs) and a genetializaf classic sets, fuzzy sets (FSs) [3],

intuitionistic fuzzy sets (IFSs) [4] and interval-valuatlitionistic fuzzy sets (IVIFSs) [5]. However,

FSs, IFSs and IVIFSs cannot represent and handlertamty and inconsistent information [1].

Then, similarity measures are not only an importaoit ito pattern recognition, medicine diagnosis,

and decision making but also an important research topthe neutrosophic theory. Various

similarity measures have been proposed by some chsesr Broumi and Smarandache [6] defined

the Hausdorff distance between neutrosophic setssantk similarity measures based on the

distance, set theoretic approach, and matching funttiaralculate the similarity degree between

neutrosophic sets. Majumdar and Samanta [7] introdseseral similarity measures of single

valued neutrosophic sets (SVNSs) based on distanceatching function, membership grades, and

then proposed an entropy measure for a SVNS. Yal§8] presented the Hamming and Euclidean

distances between interval neutrosophic sets (INSs}raidsimilarity measures and applied them

to multiple attribute decision-making problems with imtdr neutrosophic information. Ye [9]

further proposed the distance-based similarity meadug/bNSs and applied it to group decision

making problems with single valued neutrosophic imi&tion. Furthermore, Ye [2] proposed three

vector similarity measures for SNSs, including thedet; Dice, and cosine similarity measures for

SVNSs and INSs, and applied them to multicriterexision-making problems with simplified

neutrosophic information. Till now, existing similarityeasures for neutrosophic sets are scarcely

applied to medical diagnosis problems. However, ttgneosimilarity measures defined in vector



space [2] have some drawbacks in some situationsinstance, they may produce no defined
(unmeaningful) phenomena or some results calculatedhe cosine similarity measures are
unreasonable in some real cases (details given dtio8s 3). Therefore, in the situations, it is
difficult to apply them to pattern recognition and memaicdiagnosis. To overcome some drawbacks
of existing cosine measures in [2], this paper aimgrepose improved cosine similarity measures
for SNSs and apply them to medicine diagnosis. Teaothe rest of the article is organized as
follows. In Section 2, we briefly introduce some basincepts of SNSs. Section 3 reviews existing
cosine similarity measures of SNSs in vector spacktlasir drawbacks. Sections 4 proposes the
improved cosine similarity measures of SNSs baseth@wdsine function, including single valued
neutrosophic cosine similarity measures and intameakrosophic cosine similarity measures, and
investigates their properties. In Section 5, by twomnarical examples we give the comparative
analysis between the improved cosine similarity measamedsexisting cosine similarity measures
for SNSs to show the effectiveness and rationalithefiinproved cosine measures. In Section 6, the
cosine similarity measures are applied to medicinendisig problems. Conclusions and further

research are contained in Section 7.

2. Some basic concepts of SNSs

Smarandache [1] originally presented the conceptrafidrosophic set from philosophical point
of view. In a neutrosophic sétin a universal seX, its characteristic functions are expressed by a
truth-membership function Ta(X), an indeterminacy-membership functiomy(x), and a
falsity-membership functiorFa(x), respectively. The function$a(X), 1a(X), Fa(X) in X are real

standard or nonstandard subsets @f I', i.e., Ta(X): X - 170, I'[, Ia(¥): X = ]70, I'[, andFa(x): X



- 170, I'[. Then, the sum oF(X), 1a(X) andFa(X) is no restriction, i.€.0 < supTa(X) + supla(x) +
SUpFA(X) < 3.

To apply a neutrosophic set to science and engdimgeareas, Ye [2] introduced SNS, which is

a subclass of the neutrosophic set, and gave lloaviing definition of a SNS.
Definition 1 [2]: Let X be a space of points (objects), with a generimetg inX denoted by.
A neutrosophic setA in X is characterized by a truth-membership functibt{x), an
indeterminacy-membership function(x), and a falsity-membership functidfa(x). If the
functions Ta(X), 1a(X) and Fa(X) are singleton subintervals/subsets in the reaidstrd [0, 1],
suchthat Ta(X): X — [0, 1], 1a(X): X — [0, 1], andFa(X): X — [0, 1]. Then, a simplification of
the neutrosophic sétis denoted by

A={(X T, (0,1 1%, Fa () | xO X},
which is called a SNS. It is a subclass of the mosophic set and includes the concepts of INS
and SVNS.

On the one hand, if we only use the SAISvhoseTa(X), 1a(X) andFa(X) values are single
points in the real standard [0, 1] instead of stdmirals/subsets in the real standard [0, 1], the
SNSA can be described by three real numbers in theurgginterval [0, 1]. Therefore, the sum
of Ta(X), 1a(X), Fa(X) OO [0, 1] satisfies the conditiod< Ta(X) + Ia(X) + Fa(X) < 3. In this case, the
SNSA reduces to the SVNS.

For two SVNSSA = {(X, Ta(X), 1a(X), Fa())| x O X} and B = {{x, Tg(X), Is(X), Fe(X))] x O X},
there are the following relations [10]:
(1) Complement: A° :{<x, FA().1=1,(X), TA(X)) [ xO X};

(2) Inclusion:A < B if and only if TA(X) < Tg(X), 1a(X) > 1g(X), Fa(X) > Fg(X) for anyx in X;



(3) Equality:A =B if and only ifA < B andB < A.

On the other hand, if we only consider three mestbprdegrees in a SNSas the subunit
interval of the real unit interval [0, 1], the SH&n be described by three interval numbers in the
real unit interval [0, 1]. For each poixin X, we have thala(X) = [inf Ta(X), SUPTA(X)], 1a(X) =
[inf 1a(X), supla(X)], Fa(X) = [inf Fa(X), supFa(x)] O [0, 1] and O< supTa(X) + supla(X) + sup
Fa(x) < 3 for anyx 0 X. In this case, the SNSreduces to the INB.

For two INSsA = {{x, Ta(X), 1a(X), Fa(X))| x O X} and B = {{x, Tg(X), 15(X), Fe(X))| x O X}, there
are the following relations [11]:

(1) Complement:

A° = {(x[inf F,(x),SupF,(X)], [L- supl ,(X),L=inf 1 ,(x)],[inf T,(x),supT,(x)) | x0 X};

(2) Inclusion:

A € Bif and only if inf TA(X) < inf Tg(X), supTa(X) < supTg(X), inf [A(X) > inf I1g(X), supla(X) >

suplg(X), inf Fa(X) > inf Fg(X), supFa(X) > supFg(X), for anyx in X;

(3) Equality:A =B if and only ifA < B andB < A.

Especially when The upper and lower endshoée interval number§a(X), 1a(X), Fa(X) in A
are equal, the IN8 degrade to the SVNA&. Therefore, the SVNA is a special case of the INS

A, and also both are the special cases of the SNS

3. Exigting cosine similarity measures of SNSsand their drawbacks
In this section, we introduce existing cosine similantgasures for SNSs in the literature [2]
and review their drawbacks.

Then, similarity measures have the following definition.



Definition 2. A real-valued functios SNSK)x SNSK) — [0, 1] is called a similarity measure on
SNSK ) if it satisfies the following axiomatic requiremefds A, B, C 0 SNSK):

(81) 0<SA, B <1;

(S2)9A, B =1 if and only ifA=B;

(S3)SA, B =9B, A;

(S4) IfA L B C, then§A, C) < A, B) andS(A, C) < B, C).
3.1 Existing cosine similarity measure for SVNSs andrawbacks

In this section, we only use SVNSs in SN&ssume that there are two SVNSs {(x;, Ta(X),
[A(), FA(6)) % O X} and B = {{x;, Ta(x), Is(x;), Fs(x)}| % O X} in the universe of discoursé = {x,
X2, ..., %o}, Where Ta(X), 1a(X), Fa(x) O [0, 1] for anyx; O X in A andTs(X), 1s(%), Fs(X) O [0, 1]
for anyx O X in B. Then,Ye [2] presented the cosine similarity measur8@NSs in vector space

as follows:

12": TA(X)Ta (%) + 1a(X)1 s (X)) + Fa (X)) Fg (X))

C,(AB)== SN
NI TA() +12(%) + F2(x) T204) + 120%) + F2(x,)

However, one can find some drawbacks of Eq. (Ipl&sws:

(1) For two SVNS® andB, if Ta(x) = 1a(x) = Fa(X) = 0 and/ofTg(x) = Ig(X;) = Fa(xj) = O for anyx;
inX(j=1,2,...,n), Eg. (1) is undefined or unmeaningful. In thisesasne cannot utilize it to
calculate the cosine similarity measure betw&amdB.

(2) 1f Ta() = 2Ta(x), 1a0) = 2s(X), andFa(x) = 2Fe(x) or ZTa(x) = Te(x), 2a(X) = Is(x), and

2Fa(x) = Fg(x) for anyx; in X (j = 1, 2, ...,n). By applying Eq. (1), we have

18 2N00)Te(x) +20,(x)16 (%) + 2Fa (X)) Fa (%)

N2 T2(x) +12(x)) + F206) T2() + 120x) + FZ(x,)
L TAX) +I2(x) +FA(X) '

_F;T,f(xm 12(x,) +F2(x,)

C,(AB)=




SinceA # B, the measure value of Eg. (1) is equal to 1. Theams that it only satisfies the
necessary condition of the property (S2) in Defimitgy but not the sufficient condition.

Therefore, in this case, it is unreasonable to ajiply pattern recognition and medicine
diagnosis.
3.2 Existing cosine similarity measure for INSs andrigsvbacks

In this section, we only use INSs in SN8ssume that there are two IN8s= {{X, Ta(x).
[a(%), Fa())| % O X} and B = {(x;, Ta(x), Is(x}), Fe(x)}| x O X} in the universe of discoursé = {x,
Xo, .oy Xat, WhereTa(x) = [inf Ta(x), sUpTa(x)], 1a(x) = [inf Ia(x), supla(x)], Fa(x) = [inf Fa(x),
supFa(x)] O [0, 1] for anyx O X in A andTg(x) = [inf Tg(X), supTe(})], 1a(x) = [inf I5(x), sup
1e(%)], Fe(x) = [inf Fe(X), supFs(x)] O [0, 1] for anyx O X in B. Then, Ye [2] presented the
cosine similarity measure of INSs in vector spacebews:

inf T, (x,)inf Ty(x,) +inf | ,(x,)inf 1,(x,)
+inf F,(X;)inf Fy(X;) +supT,(x;) supTg(X;)
+SUPLL(6,)SUPl (x,) + SUPF, (X, )SUPF, (X))
inf T, () +[inf 1,0)f +[inf F.0)f

+[sup, o) +supt ,(x))] +[supF, (x)f

C,(AB)=

S
M:

Uy

j=

N

inf T, () +[inf 1,0)f +[nf Fs0)F |- @)
+[supr, 0] +[supl o (x))[ +[supF, (x))f

Similarly, one can find some drawbacks of Eq. (Zpdews:

(1) For two INSsA andB, if Ta(x) = 1a(x) = Fa(x) = [0, 0] and/ofTg(x) = Ig(x) = Fg(x) = [0, 0] for
anyx in X (j =1, 2, ...,n), Eq. (2) is undefined or unmeaningful. In thise€aone cannot
calculate the cosine similarity measure betw&emdB.

(2) If Ta(x) = [2inf Ta(x), 2supTe(x)], 1a(x%) = [2inf Ig(X), 2suple(x)], and Fa(x) = [2inf Fg(x),

2supFg(x)] or Te(x) = [2inf Ta(X), 2supTa(x)], Is(x) = [2inf 1a(X), 2supla(x)], and Fg(x) =



[2inf Fa(X), 2supFa(x)] for anyx in X (j = 1, 2, ...,n). By using Eq. (2), we have
inf T,(x,)inf Ty (x,) +inf 1 ,(x, )inf 1,(x)
+inf F,(X;)inf Fg(x;) +supT,(x;) suplg(X;)

13 +Sup|A(Xj)Sup| B(Xj)+supFA(Xj)SupFB(Xj)

Z . 2 . 2 . 2

El linf T, 06 +[inf 1,,(x)) +finf £, (x))]

+[supr, )] +[supt ,(x))[ +[supF, x))f

[inf T, ) +[inf 1,000 +finf 7y (x)f

+[supt, (x)f +[sup o (x))] +[supF, (x))f

[inf T, ) +[inf 1,,(x) +finf £, (x)f

1 &, +[supr, ()] +[supt . %) +[supF. (x)f

= ([inf T, (x))f +finf 1,0)f +[inf £y (x)f

+[supr, )] +[supl . 0x)f +[supF, (x)f

SinceA # B, the measure value of Eg. (2) is equal to 1. Theams that it only satisfies the
necessary condition of the property (S2) in Defimit®y but not the sufficient condition.

Therefore, in this case, the cosine similarity measarunreasonable in the application of
pattern recognition and medicine diagnosis.

In order to overcome the above mentioned disadgastave shall improve the cosine similarity

measures of SNSs in the following section.

4. Improved cosine similarity measuresfor SNSs
4.1 Improved cosine similarity measures for SVNSs

Based on the cosine function, we propose two impragesine similarity measures between
SVNSs and investigate their properties.

Let A = {{X, Ta(x), 1a(X), FaOG) % T X} and B = {(x;, Te(x), le(X), Fe())| 5 O X} be any two

SVNSs inX = {X, X, ..., X}, Where Ta(X), [a(X), Fa(x) O [0, 1] for anyx O X in A andTg(x),



Is(%), Fe(x) O [0, 1] for anyx O X in B. Then, based on the cosine function, we propose tw

improved cosine similarity measures betw@emdB, respectively, as follows:

SQ(A, B) =%icos anA(Xj)_TB(Xj) 0 IA(XJ)Z_ IB(Xj) 0 FA(Xj)_FA(Xj)) @)
SQ(A, B) :%icos ﬂ(TA(Xj)_TB(Xj) + IA(Xj)6_ IB(Xj) + FA(Xj)_FA(Xj)) @)

where the symbol[T is maximum operation. Then, the two improved cosimeilarity measures

satisfy the axiomatic requirements of similarity measur

Proposition 1. For two SVNS® andB in X = {X, X, ..., X}, the cosine similarity measuRG(A,

B) (k =1, 2) should satisfy the following properties (S1:S4)

(S1) 0< SG(A, B) < 1;

(S2)SG(A, B) = 1 if and only ifA = B;

(S3)SG(A, B) =SG(B, A);

(S4) IfCis a SVNS inK andA [0 B 0 C, thenSG(A, C) < SG(A, B) andSG(A, C) < SG(B, C).

Proof:

(S1) Since the truth-membership degree, indeterminamybership degree, and falsity-membership

degree in SVNS and the value of the cosine funamenwithin [0, 1], the similarity measure based

on the cosine function also is within [0, 1]. Hence 8G(A, B) < 1 fork =1, 2.

(S2) For any two SVNSA& andB, if A =B, this implies T, (X;) = Tg(X;), 1.(X;) = 15(X;),
Fa(x)) = Fg(x;) for j =1, 2, ..,n and x O X. Hence ‘TA(XJ.) =Ty (Xj)‘ =0,
[1406) = 15(x)| =0, and |F,(x;) = F5 (x;)| = 0. ThusSG(A, B) = 1 fork = 1, 2.

If SGA, B) = 1 fork = 1, 2, this implieF’A(xj)—TB(Xj)‘ =0, ‘IA(xj) - IB(XJ)‘ =0, and

‘FA(XI-) - Fo (X )‘ =0 sincecoq0) = 1. Then, these equalities indicalg (X;) = Ty (X;),



La(X) = 15(X), Fa(X;)) = Fg(X;) forj=1,2,..,nandx OX. HenceA=B.
(S3) Proof is straightforward.
(S4) If A0 B O C, then there arel,(X;) < Tg(X;)< To (X)), 14(X) 2 1g(X;) 2
lc(X;),and Fo(X) 2 Fg(X) 2 Fo(X) forj=1,2,...,nandx OX. Then, we have the
following inequalities:
Ta () =T 0)| £ T2 04) =T ()], [T 06) = Te ()| < [Ta (%) =T (%)),
1A 06) =160 <[1a0) =10 [1a06) =1 0| < Ta0¢) = 1c (%)
IFa () = Fo 0] <|Fa () = o ()], [Fs (%) = Fo 04| < [Fa (%)) = Fe ()
Hence, SG(A, C) < SG(A, B) andSG(A, C) < SG(B, C) for k =1, 2 since the cosine function is
a decreasing function within the interval {@2].
Therefore, we complete the proofs of these properties
Usually, one takes the weight of each elemerior x; O X into account and assumes that the
weight of a elementjisw; (j = 1, 2, ...,n) withw; O [0, 1] and Z?zle =1. Thus we can introduce

the following weighted cosine similarity measuresieen SVNSs:

WSG(A,B) :Zn:Wj cod anA(Xj)_TB (Xj) O IA(XJ)Z_ IB(Xj) D‘FA(X]) - FA(XJ)‘) . (5)
WSQ(A, B) :iwj cod HGTA(X,‘) —Ts (Xj) + IA(Xj)6_ IB(Xj) +‘FA(X]‘)_ FA(Xi)‘) , (6)

Especially whemw; = 1hforj =1, 2, ...,n, Egs. (5) and (6) reduce to Egs. (3) and (4).
4.2 Improved cosine similarity measures for INSs
Similarly, we propose two improved cosine simikanibeasures between INSs and investigate

their properties.

Let A = {(x;, Ta(%), 1a(%), Fa())l % O X} and B = {{x;, Te(x), Is(x), Fa(x))| % 0 X} be any two



INSs InX = {X4, Xp, ..., %o}, Where Ta(x) = [inf Ta(x), SUpTa(X)], 1a(%) = [inf 1a(x), supla(x)],
Fa(x) = [inf Fa(x), supFa(x)] O [0, 1] for anyx O X in A andTg(x) = [inf Tg(x), supTs(X)],
[a(x) = [inf 15(x), suple(X)], Fe(x) = [inf Fs(X), supFs(x)] O [0, 1] for anyx, O X in B. Then,
based on the cosine function, we propose two inggaosine similarity measures betwéeandB,

respectively, as follows:
SG(AB) =

1 n{infTA(xj)—infTB(xj)DianA(xj)—ianB(xj)DianA(xj)—ianA(xj) ]
15 cod

nN'= 4|+ ‘supTA (X;) —supTg (X, )‘ D‘supl A(X;) =suplg (X )‘ D‘supFA(xj ) —SUpF, (X )‘

@)
SG(AB)=

1a 7z [ [inf T, () =inf Ty ()| +[inf 1,0¢) =inf 14 (x))| +[inf F, (%) =inf F,(x)) :
02099,

+|SUPT, (X, ) = SUPT, (X, )| +[supl ,(x;) =supl g (x;)| +[supF, (x;) = SUpF, (X,
8)

where the symbol[¥ is maximum operation. Then, the two improved nessimilarity measures of
INSs satisfy the axiomatic requirements in DefonitR.
Proposition 2. For two INSsA andB in X = {xq, X, ..., X,}, the cosine similarity measu®G(A, B)
(k =3, 4) should satisfy the following properties {§4):

(S1) 0< SG(A, B) < 1;

(S2)SG(A, B) = 1 if and only ifA = B;

(S3)SG(A, B) =SG(B, A);

(S4) IfCis an INS inX andA [0 B 0 C, thenSG(A, C) < SG(A, B) andSG(A, C) < SG(B, C).
Proof:

(S1) Since the truth-membership degree, indeteryin@embership degree, and falsity-membership

degree in an INS and the value of the cosine fandre within [0, 1], the similarity measure value



based on the cosine function also is within [0,THus 0< SG(A, B) < 1 fork = 3, 4.

(S2) For any two INS# andB, if A = B, this implies T, (X;) = Tg(X;), 1.(X;) = 15(X;),
Fa(X)) = Fg(x;) forj =1, 2 ..,nandx O X. Hence ‘infTA(xj)—infTB(xj)‘:o,
inf 1,0¢)=inf 15(x)| =0, [inf Fy (x) =inf Fg ()| =0, [supT, (x,) —supT, (x))| =0 .
‘supl A(X;) —supl B(xj)‘ =0, and ‘supFA(xj) - supFg (xj)‘ =0. ThusSG(A, B) = 1 fork = 3,
4.
If SGA B) = 1 for k = 3, 4, this implies|infT,(x)~infT,(x)=0 .
inf 1,,(x;)=inf 15(x)[=0 , [inf F\(x;) =inf Fy ()[=0 ,  |supT, (x,) - supT, (x,)| =0
‘supl A(X;) —supl B(Xj)‘ =0, and ‘supFA(xj) —supFB(xj)‘ =0 sincecoq0) = 1. Then, these
equalities indicateT, (X;) = Tg(X), 14(X)) = 15(X;), Fa(X) = Fg(X;) forj =1,
2, ...,nandx O X. HenceA = B.

(S3) Proof is straightforward.

(S4) If A0 B O C, then there ardnf T, (x;) < inf Ty(x;)< infT.(X;), supT,(X;) <
SUplz (X)) < suplo(x) , infl,(x) 2 inflg(x) = infl.(x), supl(X) =
suplg(X;) 2 suplc(x), inf Fo(x;) 2 inf Fy(x;) = inf F.(X;), and supF,(x;)

> SUpF;(X;) 2 supF.(x;) forj=1,2, ...,n andx O X. Then, we have the following
inequalities:

finf T, (x;) =inf T, (x)| <[inf T, (%) =inf T (x,)],

linf T, (x;) =inf T, (x)| <[inf T, (%) =inf T (x,)],

‘supTA(xj) —supT, (x, )‘ < ‘supTA (%;) = SupT, (x, )‘,

[SUPT, (X;) = SUPT, (X,)| <[sUPT, (x,) =supT ()|,

\inf | \(%;) —inf |B(xj)\s\inf | A(%;) —inf |C(x,.)\,



\inf 5 (x;) —inf |C(xj)\s\inf | A(X;) —inf |C(x,.)\,

‘supl A(X;) —supl 5 (x; )‘ < ‘supl A(X;) —supl ¢ (x; )‘,

‘supl 5 (X;) —supl ¢ (x; )‘ < ‘supl (%) —supl . (x, )‘,

linf F, (x;) =inf F ()| < inf F, (x) =inf Fg (x))],

\inf Fq (x,) —inf Fe (X, )\s\inf Fa(x,) —inf Fe (X, )\,

‘supFA (X;) — SUpFg (X, )‘ < ‘supFA (X;) — SUpFe (X, )‘ ,

‘supFB (X;) — SupFe (X, )‘ < ‘supFA (X;) — SUpFe (X, )‘ .
Since the cosine function is a decreasing funatiithin the interval [0772], henceSG(A, C) <
SG(A, B) andSG(A, C) < SG(B, C) fork = 3, 4.
Thus, we complete the proofs of these properties.
When one takes the weight of each elemerior x; O X into account and assumes that the

weight of a element; isw; (j = 1, 2, ...,n) withw; O [0, 1] and Z,lle =1, we can introduce the

following weighted cosine similarity measures betwdéNSsA andB:
WSG(A,B) =
i 72l inf To () =inf Ty (x)| Cfinf 1,(x) =inf 15(x)| Ofinf F, (x,) =inf F,(x;)| :
W, CO$ —
= |4 +[supT, (x;) = supT, (x;)] O[supl (x;) =supl 5 (X, )| jsupF, (x;) = SUpF, (x, )
)

WSG(AB) =
; 7z [ [Inf T, () =inf Ty ()| +[inf 1,(¢;) =inf 15(x)| +[inf F, (x;) =inf F, (x)) :
2% 912 +[sUpT, (%) = SUPT, (X, )| +[supl ,(X;) =Supl g (x,)| + |SUPF, (X, ) = SUPF, (X, )

j=1
(10)
Especially wherw; = 1h for j = 1, 2, ...,n, Egs. (9) and (10) reduce to Egs. (7) and (8)nThe

whenTa(x) = inf Ta(x) = supTa(X;, [a(X) = inf 1a(X) = supla(X), andFa(x) = inf Fa(X) = sup

Fa(x) for anyx O X in A andTg(x) = inf Tg(X) = supTa(X), l1s(x) = inf Ig(x) = suplg(X), Fs(X)



= inf Fg(X) = supFg(x) for anyx O X in B, the INSSA andB reduce to the SVNSs andB, and

thenEgs. (7)-(10) reduce to Egs. (3)-(6), respectively.

5. Comparative analyses of various cosine similarity measures

To compare the improved cosine measures with egistiosine measures [2] in simplified
neutrosophic setting, we provide two numerical eplas to demonstrate the effectiveness and
rationality of the improved cosine similarity meessiof SNSs.
Example 1. We consider two SVNS& andBin X = {x} and compare the improved cosine similarity
measures with existing cosine similarity measurg2j By applying Egs. (1), (3) and (4) the
comparison of pattern recognitions is illustratedthe numerical example. These similarity measure
results are shown in Table 1.

Table 1. Similarity measure values of Egs. (1),ai3) (4)

Case 1 Case 2 Case 3 Case 4 Case 5
A (x,0.2,0.3,04 (x0.3,0.2,04 (x,1,0,0 (x,1,0,0 (x,0.4,0.2,0.6
B (x,0.2,0.3,0% (x0.4,02,03 (x0,1,) (x,0,0,0 (x,0.2,0.1, 0.3
Ci(A B)[2] 1 0.9655 0 null 1
SG(A, B) 1 0.9877 0 0 0.8910
SG(A, B) 1 0.9945 0 0.8660 0.9511

Example 2. Let us consider two INSA andBin X = {x} and compare the improved cosine
similarity measures with existing cosine similarityeasure in [2]. The comparison of pattern
recognitions for the numerical example is demotettdy using Egs. (2), (7), (8). These similarity
measure results are shown in Table 2.

Table 2. Similarity measure values of Egs. (2),a7) (8)



Casel Case 2 Case 3 Case 4 Case 5

(x[0.3,05], (x[0.3,0.5], (x[1,1], x[1,1],  (x[0.3,0.4],
A [0.2,0.4], [0.2,0.4], [0,0], [0,0], [0.2,0.3],
[0,0.1] [0.4, 0.5) [0,0]) [0,0]) [0.4,0.5)
(x[0.3,0.5], (x[0.4,05],  (x[0,0], (x[0,0],  (x[0.6,0.8],
B [0.2,0.4], [0.2,0.4], 11,1, [0,0], [0.4,0.6],
[0,0.1]) [0.3, 0.5) [1,1]) [0,0]) [0.8,1]
CyA B) [2] 1 0.9895 0 null 1
SG(A, B) 1 0.9969 0 0 0.7604
SC(A, B) 1 0.9986 0 0.8660 0.8526

The results of Tables 1 and 2 show that the exjstiosine similarity measure [2] not only

cannot carry out the recognition between Case 1Gamk 5 but also produces an unreasonable

phenomenon for Case 5 and an undefined (unmeatjimfenomenon for Case 4. This will get the

decision maker into trouble in practical applicatio However, the improved cosine similarity

measuresG cannot also carry out the recognition between Gamed Case 4, but does not produces

an undefined (unmeaningful) phenomenon. Then, therdved cosine similarity measu®G

demonstrates stronger discrimination among thenmviddbly, the improved cosine similarity

measures are superior to the existing cosine sitgilmeasure in [2]. Then, the cosine similarity

measuresGis superior to the cosine similarity meas8@.

The two examples all demonstrate that in some dhsemproved cosine similarity measures of

SNSs based on the cosine function can overcomeishdvantages of the existing cosine similarity

measures between two vectors.

6. M edicine diagnoses

Due to the increased volume of information avadabd physicians from modem medical

technologies, medicine diagnosis contains a lotiromplete, uncertainty, and inconsistent

information. In some practical situations, therahie possibility of each element having different



truth-membership, indeterminacy-membership, amsltfamembership degrees, by which an SNS is
expressed. Hence, similarity measures for SNSs aeitable tool to cope with it. Therefore, we
apply the improved cosine similarity measures oSSKo medicine diagnosis. In this section, we
shall discuss the medical diagnosis problems addpien [12].

Let us consider a set of diagnosgs {Q:(Viral fever), Q,(Malaria), Qs(Typhoid), Q4(Stomach
problem), Qs(Chest problem)}, and a set of symptorBs= {s,(Temperature),s,(Headache),
s3(Stomach pain)s(Cough),ss(Chest pain)}.

Then each diagnosi®; (i = 1, 2, 3, 4, 5) can be indicated by SNSs wittpees to all the
symptoms as follows:

Qu(Viral fever) = {(s;, 0.4, 0.6, 0.0 (s, 0.3, 0.2, 0.5 (S, 0.1, 0.3, 0.Y, (sS4, 0.4, 0.3, 0.8 (s,
0.1,0.2,0.%,

Qz(Malaria) = {s, 0.7, 0.3, 0.9 (s, 0.2, 0.2, 0.5 (s3, 0.0, 0.1, 0.9 (%4, 0.7, 0.3, 0.8}, ¢s5, 0.1,
0.1, 0.8},

Qs(Typhoid) = {sy, 0.3, 0.4, 0.3 (s, 0.6, 0.3, 0.4, (S5, 0.2, 0.1, 0.Y, (sS4, 0.2, 0.2, 0.5 (S5, 0.1,
0.0, 0.9},

Q4(Stomach problem) <§;, 0.1, 0.2, 0.Y,(s;, 0.2, 0.4, 0.4 (s3, 0.8, 0.2, 0.8 (%4, 0.2, 0.1, 0.Y,
(s5,0.2,0.1, 0.3,

Qs(Chest problem) =¢&, 0.1, 0.1, 0.8 (s, 0.0, 0.2, 0.8 (s3, 0.2, 0.0, 0.8 (54, 0.2, 0.0, 0.3 (S5,
0.8,0.1,0.%8.

Suppose a patier®?; with all the symptoms can be represented by tHewing SVNS
information:

Pi(Patient) = {s;, 0.8, 0.2, 0.1, (s, 0.6, 0.3, 0.1 (s3, 0.2, 0.1, 0.8 (=4, 0.6, 0.5, 0.4, (s, 0.1,



0.4, 0.6}.

To find a proper diagnosis, we can calculate ttensomeasur8G(Py, Q) fork=1or 2 and =

1, 2, 3, 4, 5. The proper diagno§ls for the patienP; is derived by
i = argmax SG(P,Q)} .

For convenient comparison, we utilize the existougine measure [2] and the two improved
cosine measures to handle the diagnosis problenapBlying Egs. (1), (3) and (4), we can obtain
the results of the three similarity measures betvike patienP; and the considered disea3e(i =
1, 2, 3, 4, 5), as shown in Table 3.

Table 3. Various similarity measure values for SMNfBrmation

. _ , Stomach Chest problem
Viral fever Q) Malaria@;) Typhoid Q3)

problem Qa) (Qs)
Ci(P1, Q) [2] 0.8505 0.8661 0.8185 0.5148 0.4244
SG(Py, Q) 0.8942 0.8976 0.8422 0.6102 0.5607
SG(Py, Q) 0.9443 0.9571 0.9264 0.8214 0.7650

In Table 3, the largest similarity measure indisatee proper diagnosis. Therefore, Patent
suffers from malaria. We can see that the medidiagnoses using various similarity measures
indicate the same diagnosis results and demonstrateffectiveness of these diagnoses. However,
as mentioned above, the improved cosine measuresveacome some drawbacks of the existing
cosine measure in [2] in some cases. Hence, theoireg cosine measures are superior to the
existing cosine measure.

Compared with the diagnosis results in [12], tregdbsis results d?; are different. The reason
is that the diagnosis method in [12] is on the $aéithe cosine measure of IFSs, while the diagnosi
methods in this paper are based on the improvemeaseasures of SVNSs. Therefore different
measure methods with different kinds of informati@presented by IFSs and SVNSs may give

different diagnosis results. Furthermore, the disig method in [12] cannot handle the diagnosis



problem with single valued neutrosophic informatiasile the diagnosis methods in this paper can

deal with the diagnosis problems with intuitioristuzzy information and simplified neutrosophic

information. Hence, the improved cosine measureéS\{Ss are superior to the cosine measure of

IFSs [12].

However, by only taking one time inspection, we d@nwhether one can obtain a conclusion

from a particular person with a particular deceasaot. Hence, we have to examine the patient at

different time intervals (e.g. two or three timeday) and can obtain that data drawn from multiple

time inspections for the patient are interval valuather than single values. In this case, the

improved cosine measures of INSs are a bettettadald a proper disease diagnosis.

Suppose a patienP, with all the symptoms can be represented by tHeviong INS

information:

P,(Patient) = {s,, [0.3, 0.5], [0.2, 0.3], [0.4, 0.5](;, [0.7, 0.9], [0.1, 0.2], [0.1, 0.2)(ss, [0.4,

0.6], [0.2, 0.3], [0.3, 0.4] (s, [0.3, 0.6], [0.1, 0.3], [0.4, 0.7)ss, [0.5, 0.8], [0.1, 0.4], [0.1, 0.3}

Similarly, we utilize the existing cosine measu2g énd the two improved cosine measures of

INSs to handle the diagnosis problem. By applying.K2), (7) and (8), we can obtain the results of

various similarity measures between the paferand the considered dised@¢g(i = 1, 2, 3, 4, 5), as

shown in Table 4.

Table 4. Various similarity measure values for liN®rmation

, . . Stomach Chest problem
Viral fever Q) Malaria Q2) Typhoid Qs) oroblem Q) Q)
Ca(P2, Q) [2] 0.6775 0.5613 0.7741 0.7198 0.6872
SG(P2, Q) 0.7283 0.6079 0.7915 0.7380 0.7157
SG(P2, Q) 0.8941 0.8459 0.9086 0.9056 0.8797

In Table 4, the largest similarity measure indisatee proper diagnosis. Therefore, Patent

suffers from typhoid. We can see that the mediclizgnoses using various similarity measures



indicate the same diagnosis results and demonstrateffectiveness of these diagnoses. However,

as mentioned above, the improved cosine measuresveacome some drawbacks of the existing

cosine measure in [2] in some cases. Hence, theoirap cosine measures are superior to the

existing cosine measure.

7. Conclusion

This paper proposed the improved cosine similamgasures for SNSs based on the cosine

function, including single valued neutrosophic oessimilarity measures and interval neutrosophic

cosine similarity measures. Then, the weightedneosimilarity measures of SNSs are proposed by

considering the importance of each element. Condparith existing cosine similarity measures

under simplified neutrosophic environment, the ioyad cosine measures of SNSs demonstrate

their effectiveness and rationality and can overe@ome drawbacks of existing cosine similarity

measures of SNSs. Finally, medical diagnosis proleith simplified neutrosophic information are

provided to demonstrate the applications and effecess of the improved cosine similarity

measures of SNSs.

In further work, it is necessary to apply the cesgimilarity measures of SNSs to other areas

such as decision making, Image processing, antkcing analysis.
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Table(1)

Table 1. Similarity measure values of Egs. (1), (3) and (4)

Case 1 Case 2 Case 3 Case 4 Case 5
A (x,0.2,0.3,04) (x,0.3,0.2,04) (x,1,0,0) (x,1,0,0) (x,0.4,0.2,0.6)
B (x,0.2,0.3,04) (x,04,0.2,0.3) (x0,1,1) (x,0,0,0) (x,0.2,0.1, 0.3)
C.(A, B)[2] 1 0.9655 0 null 1
SCy(A, B) 1 0.9877 0 0 0.8910
SCy(A, B) 1 0.9945 0 0.8660 0.9511




Table(2)

Table 2. Similarity measure values of Egs. (2), (7) and (8)

Case 1l Case 2 Case 3 Case 4 Case 5
(x,[0.3,0.5], (x,[0.3,0.5], (x,[1,1], (x,[1,1], (x,[0.3,0.4],
A [0.2,0.4], [0.2,0.4], [0,0], [0,0], [0.2,0.3],
[0,0.1]) [0.4,0.5]) [0,0]) [0,0]) [0.4,0.5])
(x,[0.3,0.5], (x,[0.4,0.5], (x,[0,0], (x,[0,0], (x,[0.6,0.8],
B [0.2,0.4], [0.2,0.4], [1,1], [0,0], [0.4,0.6],
[0,0.1]) [0.3,0.5]) [1,1] [0,0]) [0.8,1])
C,(A, B) [2] 1 0.9895 0 null 1
SC3(A, B) 1 0.9969 0 0 0.7604
SC4(A, B) 1 0.9986 0 0.8660 0.8526




Table(3)

Table 3. Various similarity measure values for SVNS information

i . . Stomach Chest problem
Viral fever Malaria Typhoid
(Q1) (Q2) yp (Q3) problem (Qy) (Qs)
Ci(P1, Q) [2] 0.8505 0.8661 0.8185 0.5148 0.4244
SCy(P1, Q) 0.8942 0.8976 0.8422 0.6102 0.5607

SC,(P1, Qi) 0.9443 0.9571 0.9264 0.8214 0.7650




Table(4)

Table 4. Various similarity measure values for INS information

i . . Stomach Chest problem
Viral fever (Q;) Malaria (Q;)  Typhoid (Qz) oroblem (Qu) Q)
Ca(P2, Qi) [2] 0.6775 0.5613 0.7741 0.7198 0.6872
SC3(P2, Qi) 0.7283 0.6079 0.7915 0.7380 0.7157
SC4(P2, Qi) 0.8941 0.8459 0.9086 0.9056 0.8797




